The State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Sci Rep. 2017 Mar 8;7:43676. doi: 10.1038/srep43676.
Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g, which is 6 times higher than disordered CNTs in HClO electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g) and high energy density (98.1 Wh kg) in EMIBF organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.
超级电容器通过在导电电极表面的可逆离子存储电能,因此在各种便携式储能设备中引起了极大的关注。由于电容性能主要取决于电极的结构和电化学性能,因此电极对于更高的性能变得更加关键。然而,由于电极的离子曲折迁移和积累的无序微观结构和低电化学活性,超级电容器的电容和能量密度相对较低。在这里,我们报告了一种基于聚苯胺/垂直排列碳纳米管(PANI/VA-CNTs)纳米复合材料电极的高性能超级电容器,其中垂直排列结构是通过电化学感应(0.75 V)形成的。超级电容器具有 403.3 F/g 的大比电容,是在 HClO 电解质中无序 CNTs 的 6 倍。此外,超级电容器在 EMIBF 有机电解质中还可以呈现出高比电容(314.6 F/g)、优异的循环稳定性(在 4 A/g 下 3000 次循环后保留 90.2%)和高能量密度(98.1 Wh/kg)。高性能的关键在于垂直排列结构为离子更快的扩散提供了直接的通道,并且聚苯胺的高电化学电容为离子提供了更多的容纳空间。