Suppr超能文献

基于电化学诱导垂直排列碳纳米管和聚苯胺纳米复合材料电极的高性能超级电容器。

High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes.

机构信息

The State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.

i-Lab, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.

出版信息

Sci Rep. 2017 Mar 8;7:43676. doi: 10.1038/srep43676.

Abstract

Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g, which is 6 times higher than disordered CNTs in HClO electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g) and high energy density (98.1 Wh kg) in EMIBF organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

摘要

超级电容器通过在导电电极表面的可逆离子存储电能,因此在各种便携式储能设备中引起了极大的关注。由于电容性能主要取决于电极的结构和电化学性能,因此电极对于更高的性能变得更加关键。然而,由于电极的离子曲折迁移和积累的无序微观结构和低电化学活性,超级电容器的电容和能量密度相对较低。在这里,我们报告了一种基于聚苯胺/垂直排列碳纳米管(PANI/VA-CNTs)纳米复合材料电极的高性能超级电容器,其中垂直排列结构是通过电化学感应(0.75 V)形成的。超级电容器具有 403.3 F/g 的大比电容,是在 HClO 电解质中无序 CNTs 的 6 倍。此外,超级电容器在 EMIBF 有机电解质中还可以呈现出高比电容(314.6 F/g)、优异的循环稳定性(在 4 A/g 下 3000 次循环后保留 90.2%)和高能量密度(98.1 Wh/kg)。高性能的关键在于垂直排列结构为离子更快的扩散提供了直接的通道,并且聚苯胺的高电化学电容为离子提供了更多的容纳空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8d3/5341108/d9a42e1e1847/srep43676-f1.jpg

相似文献

2
Improvement of capacitive performance of polyaniline based hybrid supercapacitor.
Heliyon. 2021 Jun 25;7(7):e07407. doi: 10.1016/j.heliyon.2021.e07407. eCollection 2021 Jul.
3
Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors.
Nanoscale Res Lett. 2020 Jul 22;15(1):151. doi: 10.1186/s11671-020-03379-w.
4
Carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors.
Int J Biol Macromol. 2022 Oct 31;219:1135-1145. doi: 10.1016/j.ijbiomac.2022.08.141. Epub 2022 Aug 29.
5
Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors.
Nanoscale. 2011 May;3(5):2202-7. doi: 10.1039/c0nr00899k. Epub 2011 Apr 1.

引用本文的文献

1
A facile approach to prepare a flexible sandwich-structured supercapacitor with rGO-coated cotton fabric as electrodes.
RSC Adv. 2019 Jan 31;9(8):4180-4189. doi: 10.1039/c9ra00171a. eCollection 2019 Jan 30.
2
All-solid-state flexible supercapacitor based on nanotube-reinforced polypyrrole hollowed structures.
RSC Adv. 2020 Nov 13;10(68):41495-41502. doi: 10.1039/d0ra08064k. eCollection 2020 Nov 11.
5
Eco-Friendly Supercapacitors Based on Biodegradable Poly(3-Hydroxy-Butyrate) and Ionic Liquids.
Nanomaterials (Basel). 2020 Oct 19;10(10):2062. doi: 10.3390/nano10102062.
6
Graphitic Porous Carbon Derived from Waste Coffee Sludge for Energy Storage.
Materials (Basel). 2020 Sep 8;13(18):3972. doi: 10.3390/ma13183972.
7
Effect of Composition Ratios on the Performance of Graphene/Carbon Nanotube/Manganese Oxide Composites toward Supercapacitor Applications.
ACS Omega. 2019 Dec 24;5(1):578-587. doi: 10.1021/acsomega.9b03163. eCollection 2020 Jan 14.
9
Amorphous Carbon Nanotubes-Nickel Oxide Nanoflower Hybrids: A Low Cost Energy Storage Material.
ACS Omega. 2018 Jun 12;3(6):6311-6320. doi: 10.1021/acsomega.8b00798. eCollection 2018 Jun 30.

本文引用的文献

1
Ordered and Active Nanochannel Electrode Design for High-Performance Electrochemical Actuator.
Small. 2016 Sep;12(36):4986-4992. doi: 10.1002/smll.201600973. Epub 2016 Apr 27.
5
A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions.
Nat Nanotechnol. 2015 May;10(5):444-52. doi: 10.1038/nnano.2015.48. Epub 2015 Apr 6.
6
Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors.
ACS Nano. 2015 Feb 24;9(2):2018-27. doi: 10.1021/nn507079x. Epub 2015 Feb 5.
7
Superelastic supercapacitors with high performances during stretching.
Adv Mater. 2015 Jan 14;27(2):356-62. doi: 10.1002/adma.201404573. Epub 2014 Nov 25.
8
Holey graphene frameworks for highly efficient capacitive energy storage.
Nat Commun. 2014 Aug 8;5:4554. doi: 10.1038/ncomms5554.
9
Graphene-based macroscopic assemblies and architectures: an emerging material system.
Chem Soc Rev. 2014 Nov 7;43(21):7295-325. doi: 10.1039/c4cs00181h. Epub 2014 Jul 28.
10
High-volumetric performance aligned nano-porous microwave exfoliated graphite oxide-based electrochemical capacitors.
Adv Mater. 2013 Sep 20;25(35):4879-85. doi: 10.1002/adma.201301243. Epub 2013 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验