Suppr超能文献

用于计算化学的深度学习

Deep learning for computational chemistry.

作者信息

Goh Garrett B, Hodas Nathan O, Vishnu Abhinav

机构信息

Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington, 99354.

出版信息

J Comput Chem. 2017 Jun 15;38(16):1291-1307. doi: 10.1002/jcc.24764. Epub 2017 Mar 8.

Abstract

The rise and fall of artificial neural networks is well documented in the scientific literature of both computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on multilayer neural networks. Within the last few years, we have seen the transformative impact of deep learning in many domains, particularly in speech recognition and computer vision, to the extent that the majority of expert practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. In this review, we provide an introductory overview into the theory of deep neural networks and their unique properties that distinguish them from traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including quantitative structure activity relationship, virtual screening, protein structure prediction, quantum chemistry, materials design, and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non-neural networks state-of-the-art models across disparate research topics, and deep neural network-based models often exceeded the "glass ceiling" expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a valuable tool for computational chemistry. © 2017 Wiley Periodicals, Inc.

摘要

人工神经网络的兴衰在计算机科学和计算化学的科学文献中都有详尽记载。然而,近二十年后的现在,我们看到人们对深度学习重新产生了兴趣,深度学习是一种基于多层神经网络的机器学习算法。在过去几年里,我们见证了深度学习在许多领域带来的变革性影响,尤其是在语音识别和计算机视觉领域,以至于这些领域的大多数专家从业者现在经常摒弃先前已确立的模型,转而青睐深度学习模型。在这篇综述中,我们对深度神经网络的理论及其与化学信息学中使用的传统机器学习算法相区别的独特特性进行了介绍性概述。通过概述深度神经网络各种新兴应用,我们强调了其在该领域广泛挑战中的普遍性和广泛适用性,这些挑战包括定量构效关系、虚拟筛选、蛋白质结构预测、量子化学、材料设计和性质预测。在评估深度神经网络的性能时,我们观察到在不同研究主题中,深度神经网络始终优于非神经网络的最先进模型,并且基于深度神经网络的模型常常超出了各自任务的“玻璃天花板”预期。再加上用于训练深度神经网络的GPU加速计算的成熟以及可用于训练这些网络的化学数据呈指数增长,我们预计深度学习算法将成为计算化学的一个有价值的工具。© 2017威利期刊公司

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验