Suppr超能文献

使用图神经网络预测化学物质对水果的影响。

Predicting the effect of chemicals on fruit using graph neural networks.

机构信息

College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.

Yunnan Agricultural University, Kunming, 650201, China.

出版信息

Sci Rep. 2024 Apr 8;14(1):8203. doi: 10.1038/s41598-024-58991-y.

Abstract

The neural network method is a type of machine learning that has made significant advances over the past few years in a variety of fields, particularly text, speech, images, videos, etc. In areas where data is unstructured, traditional machine learning has not been able to surpass the 'glass ceiling'; therefore, researchers have turned to neural networks as auxiliary tools to achieve significant breakthroughs or develop new research methods. An array of computational chemistry challenges can be addressed using neural networks, including virtual screening, quantitative structure-activity relationships, protein structure prediction, materials design, quantum chemistry, and property prediction, among others. This paper proposes a strategy for predicting the chemical properties of fruits by using graph neural networks, and it aims to provide some guidance to researchers and streamline the identification process.

摘要

神经网络方法是一种机器学习,在过去几年中在文本、语音、图像、视频等各种领域取得了重大进展。在数据非结构化的领域,传统的机器学习还未能突破“玻璃天花板”;因此,研究人员转向神经网络作为辅助工具,以取得重大突破或开发新的研究方法。神经网络可以解决许多计算化学挑战,包括虚拟筛选、定量构效关系、蛋白质结构预测、材料设计、量子化学和性质预测等。本文提出了一种使用图神经网络预测水果化学性质的策略,旨在为研究人员提供一些指导并简化识别过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4df/11002035/3dfaae5c14ae/41598_2024_58991_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验