Suppr超能文献

通过尿液蛋白质组分析预测急性冠状动脉综合征

Prediction of acute coronary syndromes by urinary proteome analysis.

作者信息

Htun Nay M, Magliano Dianna J, Zhang Zhen-Yu, Lyons Jasmine, Petit Thibault, Nkuipou-Kenfack Esther, Ramirez-Torres Adela, von Zur Muhlen Constantin, Maahs David, Schanstra Joost P, Pontillo Claudia, Pejchinovski Martin, Snell-Bergeon Janet K, Delles Christian, Mischak Harald, Staessen Jan A, Shaw Jonathan E, Koeck Thomas, Peter Karlheinz

机构信息

Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia.

Department of Medicine, Monash University, Melbourne, Australia.

出版信息

PLoS One. 2017 Mar 8;12(3):e0172036. doi: 10.1371/journal.pone.0172036. eCollection 2017.

Abstract

Identification of individuals who are at risk of suffering from acute coronary syndromes (ACS) may allow to introduce preventative measures. We aimed to identify ACS-related urinary peptides, that combined as a pattern can be used as prognostic biomarker. Proteomic data of 252 individuals enrolled in four prospective studies from Australia, Europe and North America were analyzed. 126 of these had suffered from ACS within a period of up to 5 years post urine sampling (cases). Proteomic analysis of 84 cases and 84 matched controls resulted in the discovery of 75 ACS-related urinary peptides. Combining these to a peptide pattern, we established a prognostic biomarker named Acute Coronary Syndrome Predictor 75 (ACSP75). ACSP75 demonstrated reasonable prognostic discrimination (c-statistic = 0.664), which was similar to Framingham risk scoring (c-statistics = 0.644) in a validation cohort of 42 cases and 42 controls. However, generating by a composite algorithm named Acute Coronary Syndrome Composite Predictor (ACSCP), combining the biomarker pattern ACSP75 with the previously established urinary proteomic biomarker CAD238 characterizing coronary artery disease as the underlying aetiology, and age as a risk factor, further improved discrimination (c-statistic = 0.751) resulting in an added prognostic value over Framingham risk scoring expressed by an integrated discrimination improvement of 0.273 ± 0.048 (P < 0.0001) and net reclassification improvement of 0.405 ± 0.113 (P = 0.0007). In conclusion, we demonstrate that urinary peptide biomarkers have the potential to predict future ACS events in asymptomatic patients. Further large scale studies are warranted to determine the role of urinary biomarkers in clinical practice.

摘要

识别有患急性冠状动脉综合征(ACS)风险的个体,可能有助于采取预防措施。我们旨在识别与ACS相关的尿肽,这些尿肽组合成一种模式后可作为预后生物标志物。对来自澳大利亚、欧洲和北美的四项前瞻性研究中纳入的252名个体的蛋白质组数据进行了分析。其中126人在尿液采样后的5年内发生了ACS(病例组)。对84例病例和84例匹配对照进行蛋白质组分析,发现了75种与ACS相关的尿肽。将这些尿肽组合成一种肽模式,我们建立了一种名为急性冠状动脉综合征预测因子75(ACSP75)的预后生物标志物。ACSP75显示出合理的预后判别能力(c统计量 = 0.664),在一个由42例病例和42例对照组成的验证队列中,这与弗雷明汉风险评分(c统计量 = 0.644)相似。然而,通过一种名为急性冠状动脉综合征综合预测器(ACSCP)的复合算法生成的结果,将生物标志物模式ACSP75与先前建立的表征冠状动脉疾病为潜在病因的尿蛋白质组生物标志物CAD238以及年龄作为风险因素相结合,进一步提高了判别能力(c统计量 = 0.751),导致相对于弗雷明汉风险评分有额外的预后价值,综合判别改善为0.273±0.048(P < 0.0001),净重新分类改善为0.405±0.113(P = 0.0007)。总之,我们证明尿肽生物标志物有潜力预测无症状患者未来的ACS事件。有必要进行进一步的大规模研究,以确定尿生物标志物在临床实践中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba9/5342174/0468eb5b7c91/pone.0172036.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验