Suppr超能文献

通过评估尿肽对慢性肾脏病进展进行诊断和预测

Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides.

作者信息

Schanstra Joost P, Zürbig Petra, Alkhalaf Alaa, Argiles Angel, Bakker Stephan J L, Beige Joachim, Bilo Henk J G, Chatzikyrkou Christos, Dakna Mohammed, Dawson Jesse, Delles Christian, Haller Hermann, Haubitz Marion, Husi Holger, Jankowski Joachim, Jerums George, Kleefstra Nanne, Kuznetsova Tatiana, Maahs David M, Menne Jan, Mullen William, Ortiz Alberto, Persson Frederik, Rossing Peter, Ruggenenti Piero, Rychlik Ivan, Serra Andreas L, Siwy Justyna, Snell-Bergeon Janet, Spasovski Goce, Staessen Jan A, Vlahou Antonia, Mischak Harald, Vanholder Raymond

机构信息

Institute of Cardiovascular and Metabolic Disease, French Institute of Health and Medical Research U1048, Toulouse, France; Paul Sabatier University (Toulouse III), Toulouse, France;

mosaiques diagnostics GmbH, Hanover, Germany;

出版信息

J Am Soc Nephrol. 2015 Aug;26(8):1999-2010. doi: 10.1681/ASN.2014050423. Epub 2015 Jan 14.

Abstract

Progressive CKD is generally detected at a late stage by a sustained decline in eGFR and/or the presence of significant albuminuria. With the aim of early and improved risk stratification of patients with CKD, we studied urinary peptides in a large cross-sectional multicenter cohort of 1990 individuals, including 522 with follow-up data, using proteome analysis. We validated that a previously established multipeptide urinary biomarker classifier performed significantly better in detecting and predicting progression of CKD than the current clinical standard, urinary albumin. The classifier was also more sensitive for identifying patients with rapidly progressing CKD. Compared with the combination of baseline eGFR and albuminuria (area under the curve [AUC]=0.758), the addition of the multipeptide biomarker classifier significantly improved CKD risk prediction (AUC=0.831) as assessed by the net reclassification index (0.303±-0.065; P<0.001) and integrated discrimination improvement (0.058±0.014; P<0.001). Correlation of individual urinary peptides with CKD stage and progression showed that the peptides that associated with CKD, irrespective of CKD stage or CKD progression, were either fragments of the major circulating proteins, suggesting failure of the glomerular filtration barrier sieving properties, or different collagen fragments, suggesting accumulation of intrarenal extracellular matrix. Furthermore, protein fragments associated with progression of CKD originated mostly from proteins related to inflammation and tissue repair. Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD.

摘要

进展性慢性肾脏病(CKD)通常在晚期通过估算肾小球滤过率(eGFR)持续下降和/或显著蛋白尿的出现来检测。为了对CKD患者进行早期且更完善的风险分层,我们在一个由1990名个体组成的大型横断面多中心队列中研究了尿肽,其中522名个体有随访数据,采用了蛋白质组分析。我们验证了一种先前建立的多肽尿生物标志物分类器在检测和预测CKD进展方面比当前临床标准尿白蛋白表现显著更好。该分类器在识别快速进展性CKD患者方面也更敏感。与基线eGFR和蛋白尿的组合(曲线下面积[AUC]=0.758)相比,通过净重新分类指数(0.303±0.065;P<0.001)和综合判别改善(0.058±0.014;P<0.001)评估,添加多肽生物标志物分类器显著改善了CKD风险预测(AUC=0.831)。个体尿肽与CKD分期和进展的相关性表明,与CKD相关的肽,无论CKD分期或CKD进展如何,要么是主要循环蛋白的片段,提示肾小球滤过屏障筛分特性失效,要么是不同的胶原蛋白片段,提示肾内细胞外基质的积累。此外,与CKD进展相关的蛋白片段大多源自与炎症和组织修复相关的蛋白质。本研究结果表明,尿蛋白质组分析可能会显著改善当前CKD检测和结局预测的技术水平,并且尿肽的鉴定有助于深入了解CKD中各种正在进行的病理生理过程。

相似文献

1
Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides.
J Am Soc Nephrol. 2015 Aug;26(8):1999-2010. doi: 10.1681/ASN.2014050423. Epub 2015 Jan 14.
2
A urinary proteome-based classifier for the early detection of decline in glomerular filtration.
Nephrol Dial Transplant. 2017 Sep 1;32(9):1510-1516. doi: 10.1093/ndt/gfw239.
4
Dickkopf-3 (DKK3) in Urine Identifies Patients with Short-Term Risk of eGFR Loss.
J Am Soc Nephrol. 2018 Nov;29(11):2722-2733. doi: 10.1681/ASN.2018040405. Epub 2018 Oct 2.
5
Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression.
Nephrol Dial Transplant. 2016 Feb;31(2):249-54. doi: 10.1093/ndt/gfv062. Epub 2015 Mar 19.
7
Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker.
Sci Transl Med. 2015 Dec 2;7(316):316ra193. doi: 10.1126/scitranslmed.aac7071.
8
The urinary proteome as correlate and predictor of renal function in a population study.
Nephrol Dial Transplant. 2014 Dec;29(12):2260-8. doi: 10.1093/ndt/gfu234. Epub 2014 Jun 30.
9
Changes in GFR and Albuminuria in Routine Clinical Practice and the Risk of Kidney Disease Progression.
Am J Kidney Dis. 2021 Sep;78(3):350-360.e1. doi: 10.1053/j.ajkd.2021.02.335. Epub 2021 Apr 23.

引用本文的文献

1
Identification of progression-related genes and construction of prognostic model for chronic kidney disease by machine learning.
Front Cell Dev Biol. 2025 Aug 15;13:1627355. doi: 10.3389/fcell.2025.1627355. eCollection 2025.
2
Urinary peptide signature distinguishes autosomal recessive polycystic kidney disease from other causes of chronic kidney disease.
Clin Kidney J. 2025 Apr 15;18(5):sfaf093. doi: 10.1093/ckj/sfaf093. eCollection 2025 May.
3
Association of Urinary Collagen Type III Degradation Product With Kidney Function and Fibrosis in Chronic Kidney Disease Patients.
Proteomics. 2025 Jun;25(11-12):e202400354. doi: 10.1002/pmic.202400354. Epub 2025 Apr 10.
4
Nomenclature of renal involvement in diabetes mellitus: unify to manage diversity.
Front Med (Lausanne). 2025 Mar 11;12:1533011. doi: 10.3389/fmed.2025.1533011. eCollection 2025.
7
Personalized Care in CKD: Moving Beyond Traditional Biomarkers.
Nephron. 2025;149(6):339-357. doi: 10.1159/000543640. Epub 2025 Jan 23.
9
Biomarkers of Kidney Disease Progression in ADPKD.
Kidney Int Rep. 2024 Jul 14;9(10):2860-2882. doi: 10.1016/j.ekir.2024.07.012. eCollection 2024 Oct.
10
Senescence Biomarkers CKAP4 and PTX3 Stratify Severe Kidney Disease Patients.
Cells. 2024 Sep 26;13(19):1613. doi: 10.3390/cells13191613.

本文引用的文献

1
'Progressive diabetic nephropathy. How useful is microalbuminuria?: contra'.
Kidney Int. 2014 Jul;86(1):50-7. doi: 10.1038/ki.2014.98. Epub 2014 Apr 9.
2
Summary of KDIGO 2012 CKD Guideline: behind the scenes, need for guidance, and a framework for moving forward.
Kidney Int. 2014 Jan;85(1):49-61. doi: 10.1038/ki.2013.444. Epub 2013 Nov 27.
3
Characterization of tumor suppressive function of cornulin in esophageal squamous cell carcinoma.
PLoS One. 2013 Jul 24;8(7):e68838. doi: 10.1371/journal.pone.0068838. Print 2013.
4
Proteomic analysis of visceral adipose tissue in pre-obese patients with type 2 diabetes.
Mol Cell Endocrinol. 2013 Aug 25;376(1-2):99-106. doi: 10.1016/j.mce.2013.06.010. Epub 2013 Jun 18.
5
The glomerular basement membrane as a barrier to albumin.
Nat Rev Nephrol. 2013 Aug;9(8):470-7. doi: 10.1038/nrneph.2013.109. Epub 2013 Jun 18.
6
Chronic kidney disease: global dimension and perspectives.
Lancet. 2013 Jul 20;382(9888):260-72. doi: 10.1016/S0140-6736(13)60687-X. Epub 2013 May 31.
7
Evolving importance of kidney disease: from subspecialty to global health burden.
Lancet. 2013 Jul 13;382(9887):158-69. doi: 10.1016/S0140-6736(13)60439-0. Epub 2013 May 31.
8
Hnf-1β transcription factor is an early hif-1α-independent marker of epithelial hypoxia and controls renal repair.
PLoS One. 2013 May 21;8(5):e63585. doi: 10.1371/journal.pone.0063585. Print 2013.
9
CKD273, a new proteomics classifier assessing CKD and its prognosis.
PLoS One. 2013 May 14;8(5):e62837. doi: 10.1371/journal.pone.0062837. Print 2013.
10
Zyxin regulates migration of renal epithelial cells through activation of hepatocyte nuclear factor-1β.
Am J Physiol Renal Physiol. 2013 Jul 1;305(1):F100-10. doi: 10.1152/ajprenal.00582.2012. Epub 2013 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验