Schanstra Joost P, Zürbig Petra, Alkhalaf Alaa, Argiles Angel, Bakker Stephan J L, Beige Joachim, Bilo Henk J G, Chatzikyrkou Christos, Dakna Mohammed, Dawson Jesse, Delles Christian, Haller Hermann, Haubitz Marion, Husi Holger, Jankowski Joachim, Jerums George, Kleefstra Nanne, Kuznetsova Tatiana, Maahs David M, Menne Jan, Mullen William, Ortiz Alberto, Persson Frederik, Rossing Peter, Ruggenenti Piero, Rychlik Ivan, Serra Andreas L, Siwy Justyna, Snell-Bergeon Janet, Spasovski Goce, Staessen Jan A, Vlahou Antonia, Mischak Harald, Vanholder Raymond
Institute of Cardiovascular and Metabolic Disease, French Institute of Health and Medical Research U1048, Toulouse, France; Paul Sabatier University (Toulouse III), Toulouse, France;
mosaiques diagnostics GmbH, Hanover, Germany;
J Am Soc Nephrol. 2015 Aug;26(8):1999-2010. doi: 10.1681/ASN.2014050423. Epub 2015 Jan 14.
Progressive CKD is generally detected at a late stage by a sustained decline in eGFR and/or the presence of significant albuminuria. With the aim of early and improved risk stratification of patients with CKD, we studied urinary peptides in a large cross-sectional multicenter cohort of 1990 individuals, including 522 with follow-up data, using proteome analysis. We validated that a previously established multipeptide urinary biomarker classifier performed significantly better in detecting and predicting progression of CKD than the current clinical standard, urinary albumin. The classifier was also more sensitive for identifying patients with rapidly progressing CKD. Compared with the combination of baseline eGFR and albuminuria (area under the curve [AUC]=0.758), the addition of the multipeptide biomarker classifier significantly improved CKD risk prediction (AUC=0.831) as assessed by the net reclassification index (0.303±-0.065; P<0.001) and integrated discrimination improvement (0.058±0.014; P<0.001). Correlation of individual urinary peptides with CKD stage and progression showed that the peptides that associated with CKD, irrespective of CKD stage or CKD progression, were either fragments of the major circulating proteins, suggesting failure of the glomerular filtration barrier sieving properties, or different collagen fragments, suggesting accumulation of intrarenal extracellular matrix. Furthermore, protein fragments associated with progression of CKD originated mostly from proteins related to inflammation and tissue repair. Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD.
进展性慢性肾脏病(CKD)通常在晚期通过估算肾小球滤过率(eGFR)持续下降和/或显著蛋白尿的出现来检测。为了对CKD患者进行早期且更完善的风险分层,我们在一个由1990名个体组成的大型横断面多中心队列中研究了尿肽,其中522名个体有随访数据,采用了蛋白质组分析。我们验证了一种先前建立的多肽尿生物标志物分类器在检测和预测CKD进展方面比当前临床标准尿白蛋白表现显著更好。该分类器在识别快速进展性CKD患者方面也更敏感。与基线eGFR和蛋白尿的组合(曲线下面积[AUC]=0.758)相比,通过净重新分类指数(0.303±0.065;P<0.001)和综合判别改善(0.058±0.014;P<0.001)评估,添加多肽生物标志物分类器显著改善了CKD风险预测(AUC=0.831)。个体尿肽与CKD分期和进展的相关性表明,与CKD相关的肽,无论CKD分期或CKD进展如何,要么是主要循环蛋白的片段,提示肾小球滤过屏障筛分特性失效,要么是不同的胶原蛋白片段,提示肾内细胞外基质的积累。此外,与CKD进展相关的蛋白片段大多源自与炎症和组织修复相关的蛋白质。本研究结果表明,尿蛋白质组分析可能会显著改善当前CKD检测和结局预测的技术水平,并且尿肽的鉴定有助于深入了解CKD中各种正在进行的病理生理过程。