Suppr超能文献

正则化和事件相关电位估计的广义线性模型。

Regularization and a general linear model for event-related potential estimation.

机构信息

Laboratory GIPSA-lab, University Grenoble Alpes, Grenoble, France.

CNRS, GIPSA-lab, 38000, Grenoble, France.

出版信息

Behav Res Methods. 2017 Dec;49(6):2255-2274. doi: 10.3758/s13428-017-0856-z.

Abstract

The usual event-related potential (ERP) estimation is the average across epochs time-locked on stimuli of interest. These stimuli are repeated several times to improve the signal-to-noise ratio (SNR) and only one evoked potential is estimated inside the temporal window of interest. Consequently, the average estimation does not take into account other neural responses within the same epoch that are due to short inter stimuli intervals. These adjacent neural responses may overlap and distort the evoked potential of interest. This overlapping process is a significant issue for the eye fixation-related potential (EFRP) technique in which the epochs are time-locked on the ocular fixations. The inter fixation intervals are not experimentally controlled and can be shorter than the neural response's latency. To begin, the Tikhonov regularization, applied to the classical average estimation, was introduced to improve the SNR for a given number of trials. The generalized cross validation was chosen to obtain the optimal value of the ridge parameter. Then, to deal with the issue of overlapping, the general linear model (GLM), was used to extract all neural responses inside an epoch. Finally, the regularization was also applied to it. The models (the classical average and the GLM with and without regularization) were compared on both simulated data and real datasets from a visual scene exploration in co-registration with an eye-tracker, and from a P300 Speller experiment. The regularization was found to improve the estimation by average for a given number of trials. The GLM was more robust and efficient, its efficiency actually reinforced by the regularization.

摘要

通常的事件相关电位 (ERP) 估计是在与感兴趣的刺激相关的时间锁定的epoch 上的平均值。这些刺激会重复多次,以提高信噪比 (SNR),并且仅在感兴趣的时间窗口内估计一个诱发电位。因此,平均估计没有考虑到同一 epoch 内由于短刺激间隔而引起的其他神经响应。这些相邻的神经响应可能会重叠并扭曲感兴趣的诱发电位。这个重叠过程是眼固视相关电位 (EFRP) 技术中的一个重要问题,其中 epoch 是在眼球固视上时间锁定的。固视间隔不由实验控制,并且可能短于神经响应的潜伏期。首先,将经典平均估计应用于 Tikhonov 正则化,以提高给定试验次数的 SNR。选择广义交叉验证来获得岭参数的最佳值。然后,为了解决重叠问题,使用广义线性模型 (GLM) 提取 epoch 内的所有神经响应。最后,还对其应用了正则化。将模型(经典平均和具有和不具有正则化的 GLM)在模拟数据和来自与眼动追踪器共配准的视觉场景探索的真实数据集上进行了比较,并在 P300 拼写器实验上进行了比较。发现正则化可以在给定的试验次数下提高估计的准确性。GLM 更稳健且高效,实际上,正则化增强了其效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验