Ionescu Gelu, Frey Aline, Guyader Nathalie, Kristensen Emmanuelle, Andreev Anton, Guérin-Dugué Anne
Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS - INSPE d'Aix-Marseille Université, Marseille, France.
Univ. Grenoble Alpes, CNRS, Grenoble INP*, GIPSA-lab, 38000 11 rue des Mathématiques, Grenoble Campus BP46, F-38402 Saint Martin d'Hères Cedex, 38000, Grenoble, France.
Behav Res Methods. 2022 Oct;54(5):2545-2564. doi: 10.3758/s13428-021-01756-6. Epub 2021 Dec 16.
Interest in applications for the simultaneous acquisition of data from different devices is growing. In neuroscience for example, co-registration complements and overcomes some of the shortcomings of individual methods. However, precise synchronization of the different data streams involved is required before joint data analysis. Our article presents and evaluates a synchronization method which maximizes the alignment of information across time. Synchronization through common triggers is widely used in all existing methods, because it is very simple and effective. However, this solution has been found to fail in certain practical situations, namely for the spurious detection of triggers and/or when the timestamps of triggers sampled by each acquisition device are not jointly distributed linearly for the entire duration of an experiment. We propose two additional mechanisms, the "Longest Common Subsequence" algorithm and a piecewise linear regression, in order to overcome the limitations of the classical method of synchronizing common triggers. The proposed synchronization method was evaluated using both real and artificial data. Co-registrations of electroencephalographic signals (EEG) and eye movements were used for real data. We compared the effectiveness of our method to another open source method implemented using EYE-EEG toolbox. Overall, we show that our method, implemented in C++ as a DOS application, is very fast, robust and fully automatic.
对从不同设备同时获取数据的应用的兴趣正在增长。例如,在神经科学中,配准补充并克服了个别方法的一些缺点。然而,在进行联合数据分析之前,需要对所涉及的不同数据流进行精确同步。我们的文章提出并评估了一种同步方法,该方法可使信息在时间上的对齐最大化。通过公共触发器进行同步在所有现有方法中被广泛使用,因为它非常简单有效。然而,已经发现在某些实际情况下这种解决方案会失败,即在触发的虚假检测和/或当每个采集设备采样的触发时间戳在整个实验持续时间内不是线性联合分布时。我们提出了两种额外的机制,即“最长公共子序列”算法和分段线性回归,以克服通过公共触发器进行同步的经典方法的局限性。使用真实数据和人工数据对所提出的同步方法进行了评估。真实数据使用了脑电图信号(EEG)和眼动的配准。我们将我们方法的有效性与使用EYE - EEG工具箱实现的另一种开源方法进行了比较。总体而言,我们表明我们用C++实现为DOS应用程序的方法非常快速、稳健且完全自动化。