Philips Research Laboratories, Röntgenstrasse 24-26, D-22335, Hamburg, Germany.
Medical Physics Group, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
Med Phys. 2017 Jun;44(6):2281-2292. doi: 10.1002/mp.12203. Epub 2017 Apr 25.
An aortic valve stenosis is an abnormal narrowing of the aortic valve (AV). It impedes blood flow and is often quantified by the geometric orifice area of the AV (AVA) and the pressure drop (PD). Using the Bernoulli equation, a relation between the PD and the effective orifice area (EOA) represented by the area of the vena contracta (VC) downstream of the AV can be derived. We investigate the relation between the AVA and the EOA using patient anatomies derived from cardiac computed tomography (CT) angiography images and computational fluid dynamic (CFD) simulations.
We developed a shape-constrained deformable model for segmenting the AV, the ascending aorta (AA), and the left ventricle (LV) in cardiac CT images. In particular, we designed a structured AV mesh model, trained the model on CT scans, and integrated it with an available model for heart segmentation. The planimetric AVA was determined from the cross-sectional slice with minimum AV opening area. In addition, the AVA was determined as the nonobstructed area along the AV axis by projecting the AV leaflet rims on a plane perpendicular to the AV axis. The flow rate was derived from the LV volume change. Steady-state CFD simulations were performed on the patient anatomies resulting from segmentation.
Heart and valve segmentation was used to retrospectively analyze 22 cardiac CT angiography image sequences of patients with noncalcified and (partially) severely calcified tricuspid AVs. Resulting AVAs were in the range of 1-4.5 cm and ejection fractions (EFs) between 20 and 75%. AVA values computed by projection were smaller than those computed by planimetry, and both were strongly correlated (R = 0.995). EOA values computed via the Bernoulli equation from CFD-based PD results were strongly correlated with both AVA values (R = 0.97). EOA values were ∼10% smaller than planimetric AVA values. For EOA values < 2.0 cm , the EOA was up to ∼15% larger than the projected AVA.
The presented segmentation algorithm allowed to construct detailed AV models for 22 patient cases. Because of the crown-like 3D structure of the AV, the planimetric AVA is larger than the projected AVA formed by the free edges of the AV leaflets. The AVA formed by the free edges of the AV leaflets was smaller than the EOA for EOA values <2.0cm2. This contradiction with respect to previous studies that reported the EOA to be always smaller or equal to the geometric AVA is explained by the more detailed AV models used within this study.
主动脉瓣狭窄是主动脉瓣(AV)的异常狭窄。它阻碍了血流,通常通过 AV 的几何瓣口面积(AVA)和压差(PD)来量化。利用伯努利方程,可以推导出 AV 下游收缩口(VC)处的 PD 与有效瓣口面积(EOA)之间的关系。我们使用源自心脏计算机断层扫描(CT)血管造影图像和计算流体动力学(CFD)模拟的患者解剖结构来研究 AVA 和 EOA 之间的关系。
我们开发了一种用于分割心脏 CT 图像中的 AV、升主动脉(AA)和左心室(LV)的形状约束可变形模型。特别是,我们设计了一个结构化的 AV 网格模型,在 CT 扫描上对模型进行了训练,并将其与现有的心脏分割模型集成在一起。通过具有最小 AV 开口面积的横截面切片确定平面 AVA。此外,通过将 AV 瓣叶边缘投影到垂直于 AV 轴的平面上,沿着 AV 轴确定非阻塞的 AVA 区域。流量由 LV 体积变化得出。在分割产生的患者解剖结构上进行了稳态 CFD 模拟。
使用心脏和瓣膜分割来回顾性分析 22 例非钙化和(部分)严重钙化三尖瓣 AV 的心脏 CT 血管造影图像序列。所得 AVA 在 1-4.5cm 之间,射血分数(EF)在 20-75%之间。通过投影计算的 AVA 值小于通过平面测量计算的 AVA 值,并且两者均具有很强的相关性(R = 0.995)。从 CFD 基于 PD 结果的伯努利方程计算得出的 EOA 值与两者均具有很强的相关性(R = 0.97)。EOA 值比平面 AVA 值小约 10%。对于 EOA 值<2.0cm,EOA 值比 AV 瓣叶自由边缘形成的投影 AVA 值大约 15%。
所提出的分割算法允许为 22 个患者病例构建详细的 AV 模型。由于 AV 的冠状 3D 结构,平面 AVA 大于 AV 瓣叶自由边缘形成的投影 AVA。对于 EOA 值<2.0cm 的情况,AV 瓣叶自由边缘形成的 AVA 小于 EOA 值。与之前报道 EOA 值始终小于或等于几何 AVA 的研究相比,这种与之前研究的矛盾可以通过本研究中使用的更详细的 AV 模型来解释。