Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.
Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain.
Biomacromolecules. 2017 Apr 10;18(4):1039-1063. doi: 10.1021/acs.biomac.7b00197. Epub 2017 Mar 22.
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
单电子转移-自由基聚合(SET-LRP)是一种用于合成具有明确拓扑结构和链末端官能团的乙烯基聚合物的强大而通用的工具。SET-LRP 的关键步骤是通过用铜(0)线、粉末或原位生成的新生铜(0)激活,将生成的 Cu(I)X 歧化,生成新生的、极活泼的 Cu(0)原子和纳米颗粒以及 Cu(II)X。新生的 Cu(0)通过均相或非均相的外球单电子转移机制(SET-LRP)激活引发剂和休眠链。SET-LRP 提供了大量单体(例如(甲基)丙烯酸酯、(甲基)丙烯酰胺、苯乙烯和氯乙烯)的超快聚合,包括疏水性和不溶于水的单体到亲水性和水溶性单体。SET-LRP 的一些优点包括:(i)在温和的反应条件下,使用铜(0)线或粉末作为现成的催化剂;(ii)对分子量演变和分布以及聚合物链末端具有出色的控制;(iii)对官能团具有高容忍度,允许聚合商业级单体;(iv)对所得聚合物的纯化要求有限。在这篇观点文章中,我们强调了 SET-LRP 在生物大分子及其缀合物合成方面的最新进展。