Theodorou Alexis, Gounaris Dimitris, Voutyritsa Errika, Andrikopoulos Nicholas, Baltzaki Chrissie Isabella Maria, Anastasaki Athina, Velonia Kelly
Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece.
Department of Materials, ETH Zurich, Zurich 8093, Switzerland.
Biomacromolecules. 2022 Oct 10;23(10):4241-4253. doi: 10.1021/acs.biomac.2c00726. Epub 2022 Sep 6.
The synthesis of protein-polymer conjugates usually requires extensive and costly deoxygenation procedures, thus limiting their availability and potential applications. In this work, we report the ultrafast synthesis of polymer-protein bioconjugates in the absence of any external deoxygenation via an aqueous copper-mediated methodology. Within 10 min and in the absence of any external stimulus such as light (which may limit the monomer scope and/or disrupt the secondary structure of the protein), a range of hydrophobic and hydrophilic monomers could be successfully grafted from a BSA macroinitiator, yielding well-defined polymer-protein bioconjugates at quantitative yields. Our approach is compatible with a wide range of monomer classes such as (meth) acrylates, styrene, and acrylamides as well as multiple macroinitiators including BSA, BSA nanoparticles, and beta-galactosidase from . Notably, the synthesis of challenging protein-polymer-polymer triblock copolymers was also demonstrated, thus significantly expanding the scope of our strategy. Importantly, both lower and higher scale polymerizations (from 0.2 to 35 mL) were possible without compromising the overall efficiency and the final yields. This simple methodology paves the way for a plethora of applications in aqueous solutions without the need of external stimuli or tedious deoxygenation.
蛋白质-聚合物共轭物的合成通常需要广泛且昂贵的脱氧程序,从而限制了它们的可用性和潜在应用。在这项工作中,我们报道了通过水相铜介导的方法,在没有任何外部脱氧的情况下超快合成聚合物-蛋白质生物共轭物。在10分钟内,且在没有任何外部刺激(如光,光可能会限制单体范围和/或破坏蛋白质的二级结构)的情况下,一系列疏水和亲水单体可以成功地从牛血清白蛋白(BSA)大分子引发剂上接枝,以定量产率得到结构明确的聚合物-蛋白质生物共轭物。我们的方法与多种单体类型兼容,如(甲基)丙烯酸酯、苯乙烯和丙烯酰胺,以及多种大分子引发剂,包括BSA、BSA纳米颗粒和来自[具体来源未明确]的β-半乳糖苷酶。值得注意的是,还展示了具有挑战性的蛋白质-聚合物-聚合物三嵌段共聚物的合成,从而显著扩展了我们策略的范围。重要的是,较低和较高规模的聚合反应(从0.2到35毫升)都是可行的,而不会影响整体效率和最终产率。这种简单的方法为在水溶液中的大量应用铺平了道路,无需外部刺激或繁琐的脱氧操作。