Peptide-Lipid Interaction, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany.
Applied Microbiology, Ruhr University Bochum, Bochum, Germany.
Sci Rep. 2017 Mar 9;7:44332. doi: 10.1038/srep44332.
The synthetic cyclic hexapeptide cWFW (cyclo(RRRWFW)) has a rapid bactericidal activity against both Gram-positive and Gram-negative bacteria. Its detailed mode of action has, however, remained elusive. In contrast to most antimicrobial peptides, cWFW neither permeabilizes the membrane nor translocates to the cytoplasm. Using a combination of proteome analysis, fluorescence microscopy, and membrane analysis we show that cWFW instead triggers a rapid reduction of membrane fluidity both in live Bacillus subtilis cells and in model membranes. This immediate activity is accompanied by formation of distinct membrane domains which differ in local membrane fluidity, and which severely disrupts membrane protein organisation by segregating peripheral and integral proteins into domains of different rigidity. These major membrane disturbances cause specific inhibition of cell wall synthesis, and trigger autolysis. This novel antibacterial mode of action holds a low risk to induce bacterial resistance, and provides valuable information for the design of new synthetic antimicrobial peptides.
合成的环状六肽 cWFW(环状(RRRWFW))对革兰氏阳性菌和革兰氏阴性菌均具有快速杀菌活性。然而,其详细的作用机制仍不清楚。与大多数抗菌肽不同,cWFW 既不能渗透细胞膜,也不能向细胞质转运。我们使用蛋白质组分析、荧光显微镜和膜分析的组合,表明 cWFW 会在活枯草芽孢杆菌细胞和模型膜中迅速降低膜流动性。这种即时活性伴随着形成不同局部膜流动性的独特膜域,这些膜域通过将外周蛋白和整合蛋白分隔到不同刚性的域中来严重破坏膜蛋白的组织。这些主要的膜干扰会导致细胞壁合成的特异性抑制,并引发自溶。这种新的抗菌作用模式引发细菌耐药的风险较低,并为设计新型合成抗菌肽提供了有价值的信息。