Suppr超能文献

小分子通过破坏膜流动性和电压来抑制多种葡萄球菌生长状态。

Inhibition of multiple staphylococcal growth states by a small molecule that disrupts membrane fluidity and voltage.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.

出版信息

mSphere. 2024 Mar 26;9(3):e0077223. doi: 10.1128/msphere.00772-23. Epub 2024 Mar 6.

Abstract

New molecular approaches to disrupting bacterial infections are needed. The bacterial cell membrane is an essential structure with diverse potential lipid and protein targets for antimicrobials. While rapid lysis of the bacterial cell membrane kills bacteria, lytic compounds are generally toxic to whole animals. In contrast, compounds that subtly damage the bacterial cell membrane could disable a microbe, facilitating pathogen clearance by the immune system with limited compound toxicity. A previously described small molecule, D66, terminates serotype Typhimurium (. Typhimurium) infection of macrophages and reduces tissue colonization in mice. The compound dissipates bacterial inner membrane voltage without rapid cell lysis under broth conditions that permeabilize the outer membrane or disable efflux pumps. In standard media, the cell envelope protects Gram-negative bacteria from D66. We evaluated the activity of D66 in Gram-positive bacteria because their distinct envelope structure, specifically the absence of an outer membrane, could facilitate mechanism of action studies. We observed that D66 inhibited Gram-positive bacterial cell growth, rapidly increased membrane fluidity, and disrupted membrane voltage while barrier function remained intact. The compound also prevented planktonic staphylococcus from forming biofilms and a disturbed three-dimensional structure in 1-day-old biofilms. D66 furthermore reduced the survival of staphylococcal persister cells and of intracellular . These data indicate that staphylococcal cells in multiple growth states germane to infection are susceptible to changes in lipid packing and membrane conductivity. Thus, agents that subtly damage bacterial cell membranes could have utility in preventing or treating disease.IMPORTANCEAn underutilized potential antibacterial target is the cell membrane, which supports or associates with approximately half of bacterial proteins and has a phospholipid makeup distinct from mammalian cell membranes. Previously, an experimental small molecule, D66, was shown to subtly damage Gram-negative bacterial cell membranes and to disrupt infection of mammalian cells. Here, we show that D66 increases the fluidity of Gram-positive bacterial cell membranes, dissipates membrane voltage, and inhibits the human pathogen in several infection-relevant growth states. Thus, compounds that cause membrane damage without lysing cells could be useful for mitigating infections caused by .

摘要

需要新的分子方法来破坏细菌感染。细菌细胞膜是一种必不可少的结构,具有多种潜在的脂质和蛋白质作为抗菌药物的靶标。虽然快速裂解细菌细胞膜可以杀死细菌,但裂解化合物通常对整个动物有毒。相比之下,微妙破坏细菌细胞膜的化合物可以使微生物失能,从而使免疫系统在有限的化合物毒性下清除病原体。一种先前描述的小分子 D66 终止血清型鼠伤寒沙门氏菌(Typhimurium)感染巨噬细胞,并减少小鼠组织定殖。该化合物在破坏外膜或使外排泵失活的肉汤条件下耗散细菌内膜电压,而不会导致快速细胞裂解。在标准培养基中,细胞包膜保护革兰氏阴性细菌免受 D66 的影响。我们评估了 D66 在革兰氏阳性细菌中的活性,因为它们独特的包膜结构,特别是缺乏外膜,可能有助于作用机制的研究。我们观察到 D66 抑制革兰氏阳性细菌的细胞生长,迅速增加膜流动性,并破坏膜电压,同时屏障功能保持完整。该化合物还防止浮游葡萄球菌形成生物膜,并在 1 天龄的生物膜中扰乱三维结构。D66 进一步减少了葡萄球菌持久细胞和细胞内的存活。这些数据表明,与感染相关的多种生长状态的葡萄球菌细胞易受脂质堆积和膜电导率变化的影响。因此,微妙破坏细菌细胞膜的药物可能在预防或治疗疾病方面具有实用价值。

重要性

细胞膜是一个未被充分利用的潜在抗菌靶点,它支持或与大约一半的细菌蛋白有关,其磷脂组成与哺乳动物细胞膜不同。以前,一种实验性的小分子 D66 被证明可以微妙地破坏革兰氏阴性细菌的细胞膜,并破坏哺乳动物细胞的感染。在这里,我们表明 D66 增加了革兰氏阳性细菌细胞膜的流动性,耗散膜电压,并抑制了几种与感染相关的生长状态下的人类病原体。因此,导致细胞膜损伤而不裂解细胞的化合物可能有助于减轻由引起的感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d4/10964410/b141d18fa32f/msphere.00772-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验