Sharma Alok K, Birrane Gabriel, Anklin Clemens, Rigby Alan C, Alper Seth L
From the Division of Nephrology and Center for Vascular Biology Research,
the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215.
J Biol Chem. 2017 Apr 28;292(17):7052-7065. doi: 10.1074/jbc.M117.781260. Epub 2017 Mar 9.
Nitrovasodilators relax vascular smooth-muscle cells in part by modulating the interaction of the C-terminal coiled-coil domain (CC) and/or the leucine zipper (LZ) domain of the myosin light-chain phosphatase component, myosin-binding subunit (MBS), with the N-terminal LZ domain of protein kinase G (PKG)-Iα. Despite the importance of vasodilation in cardiovascular homeostasis and therapy, our structural understanding of the MBS CC interaction with LZ PKG-1α has remained limited. Here, we report the 3D NMR solution structure of homodimeric CC MBS in which amino acids 932-967 form a coiled-coil of two monomeric α-helices in parallel orientation. We found that the structure is stabilized by non-covalent interactions, with dominant contributions from hydrophobic residues at and heptad positions. Using NMR chemical-shift perturbation (CSP) analysis, we identified a subset of hydrophobic and charged residues of CC MBS (localized within and adjacent to the C-terminal region) contributing to the dimer-dimer interaction interface between homodimeric CC MBS and homodimeric LZ PKG-Iα. N backbone relaxation NMR revealed the dynamic features of the CC MBS interface residues identified by NMR CSP. Paramagnetic relaxation enhancement- and CSP-NMR-guided HADDOCK modeling of the dimer-dimer interface of the heterotetrameric complex exhibits the involvement of non-covalent intermolecular interactions that are localized within and adjacent to the C-terminal regions of each homodimer. These results deepen our understanding of the binding restraints of this CC MBS·LZ PKG-Iα low-affinity heterotetrameric complex and allow reevaluation of the role(s) of myosin light-chain phosphatase partner polypeptides in regulation of vascular smooth-muscle cell contractility.
硝基血管扩张剂部分地通过调节肌球蛋白轻链磷酸酶组分肌球蛋白结合亚基(MBS)的C末端卷曲螺旋结构域(CC)和/或亮氨酸拉链(LZ)结构域与蛋白激酶G(PKG)-Iα的N末端LZ结构域之间的相互作用来松弛血管平滑肌细胞。尽管血管舒张在心血管稳态和治疗中很重要,但我们对MBS CC与LZ PKG-1α相互作用的结构理解仍然有限。在这里,我们报告了同二聚体CC MBS的3D NMR溶液结构,其中氨基酸932-967形成两个平行取向的单体α螺旋的卷曲螺旋。我们发现该结构通过非共价相互作用得以稳定,其中来自七肽位置 和 的疏水残基起主要作用。使用NMR化学位移扰动(CSP)分析,我们确定了CC MBS的一组疏水和带电荷残基(位于C末端区域内和附近),它们有助于同二聚体CC MBS和同二聚体LZ PKG-Iα之间的二聚体-二聚体相互作用界面。N主链弛豫NMR揭示了通过NMR CSP鉴定的CC MBS界面残基的动态特征。异源四聚体复合物二聚体-二聚体界面的顺磁弛豫增强和CSP-NMR引导的HADDOCK建模显示了非共价分子间相互作用的参与,这些相互作用位于每个同二聚体的C末端区域内和附近。这些结果加深了我们对这种CC MBS·LZ PKG-Iα低亲和力异源四聚体复合物结合限制的理解,并允许重新评估肌球蛋白轻链磷酸酶伴侣多肽在调节血管平滑肌细胞收缩性中的作用。