Suppr超能文献

癫痫中高频振荡的检测与特征分析:大数据分析的案例研究

Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis.

作者信息

Huang Liang, Ni Xuan, Ditto William L, Spano Mark, Carney Paul R, Lai Ying-Cheng

机构信息

School of Physical Science and Technology , Lanzhou University , Lanzhou , Gansu 730000 , People's Republic of China.

School of Electrical , Computer and Energy Engineering , Arizona State University , Tempe , AZ 85287 , USA.

出版信息

R Soc Open Sci. 2017 Jan 18;4(1):160741. doi: 10.1098/rsos.160741. eCollection 2017 Jan.

Abstract

We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on-off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.

摘要

我们开发了一个框架,用于从海量、非线性和非平稳时间序列数据中发现并分析动态异常。该框架由三个步骤组成:对海量数据集进行预处理以消除错误数据段;应用经验模态分解和希尔伯特变换范式,以获取不同时间尺度下时间序列中嵌入的基本成分;以及对这些成分进行统计/标度分析。作为一个案例研究,我们将我们的框架应用于从大鼠脑电图记录的大型数据库中检测和表征高频振荡(HFOs)。我们发现了一个惊人的现象:HFOs表现出开-关间歇性,这种间歇性可以通过代数标度律进行量化。我们的框架可以推广到其他领域中与大数据相关的问题,如大规模传感器数据分析和地震数据分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff83/5319343/c25f6033a1aa/rsos160741-g1.jpg

相似文献

1
Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis.
R Soc Open Sci. 2017 Jan 18;4(1):160741. doi: 10.1098/rsos.160741. eCollection 2017 Jan.
2
Mathematical structures for epilepsy: High-frequency oscillation and interictal epileptic slow (red slow).
Neurosci Res. 2020 Jul;156:178-187. doi: 10.1016/j.neures.2019.11.008. Epub 2019 Nov 20.
4
The role of high-frequency oscillations in epilepsy surgery planning.
Cochrane Database Syst Rev. 2017 Oct 5;10(10):CD010235. doi: 10.1002/14651858.CD010235.pub3.
5
Detecting position dependent tremor with the Empirical mode decomposition.
J Clin Mov Disord. 2015 Feb 16;2:3. doi: 10.1186/s40734-014-0014-z. eCollection 2015.
6
Scalp high frequency oscillations (HFOs) in absence epilepsy: An independent component analysis (ICA) based approach.
Epilepsy Res. 2015 Sep;115:133-40. doi: 10.1016/j.eplepsyres.2015.06.008. Epub 2015 Jun 14.
7
Epileptic high-frequency oscillations occur in neonates with a high risk for seizures.
Front Neurol. 2023 Jan 4;13:1048629. doi: 10.3389/fneur.2022.1048629. eCollection 2022.
8
Ictal Occurrence of High-Frequency Oscillations Correlates With Seizure Severity in a Rat Model of Temporal Lobe Epilepsy.
Front Hum Neurosci. 2021 Jun 8;15:624620. doi: 10.3389/fnhum.2021.624620. eCollection 2021.
9
An intelligent epilepsy seizure detection system using adaptive mode decomposition of EEG signals.
Phys Eng Sci Med. 2022 Mar;45(1):261-272. doi: 10.1007/s13246-022-01111-9. Epub 2022 Feb 15.
10
Brain Microtubule Electrical Oscillations-Empirical Mode Decomposition Analysis.
Cell Mol Neurobiol. 2023 Jul;43(5):2089-2104. doi: 10.1007/s10571-022-01290-9. Epub 2022 Oct 7.

引用本文的文献

1
Noise-Assisted Multivariate EMD-Based Mean-Phase Coherence Analysis to Evaluate Phase-Synchrony Dynamics in Epilepsy Patients.
IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2270-2279. doi: 10.1109/TNSRE.2018.2881606. Epub 2018 Nov 15.
2
Generalizability of High Frequency Oscillation Evaluations in the Ripple Band.
Front Neurol. 2018 Jun 28;9:510. doi: 10.3389/fneur.2018.00510. eCollection 2018.
3
Survival and weak chaos.
R Soc Open Sci. 2018 May 16;5(5):172181. doi: 10.1098/rsos.172181. eCollection 2018 May.
4
Progress and Remaining Challenges in the Application of High Frequency Oscillations as Biomarkers of Epileptic Brain.
Curr Opin Biomed Eng. 2017 Dec;4:87-96. doi: 10.1016/j.cobme.2017.09.006. Epub 2017 Sep 22.

本文引用的文献

1
Challenges of Big Data Analysis.
Natl Sci Rev. 2014 Jun;1(2):293-314. doi: 10.1093/nsr/nwt032.
2
Big data. The parable of Google Flu: traps in big data analysis.
Science. 2014 Mar 14;343(6176):1203-5. doi: 10.1126/science.1248506.
3
Biology: The big challenges of big data.
Nature. 2013 Jun 13;498(7453):255-60. doi: 10.1038/498255a.
4
Smart health monitoring systems: an overview of design and modeling.
J Med Syst. 2013 Apr;37(2):9898. doi: 10.1007/s10916-012-9898-z. Epub 2013 Jan 15.
6
High-frequency oscillations (HFOs) in clinical epilepsy.
Prog Neurobiol. 2012 Sep;98(3):302-15. doi: 10.1016/j.pneurobio.2012.03.001. Epub 2012 Apr 3.
7
High-frequency oscillations as a new biomarker in epilepsy.
Ann Neurol. 2012 Feb;71(2):169-78. doi: 10.1002/ana.22548.
8
Data mining neocortical high-frequency oscillations in epilepsy and controls.
Brain. 2011 Oct;134(Pt 10):2948-59. doi: 10.1093/brain/awr212. Epub 2011 Sep 8.
9
Ictal high-frequency oscillations in neocortical epilepsy: implications for seizure localization and surgical resection.
Epilepsia. 2011 Oct;52(10):1792-801. doi: 10.1111/j.1528-1167.2011.03165.x. Epub 2011 Jul 18.
10
Epileptic seizures: Quakes of the brain?
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021919. doi: 10.1103/PhysRevE.82.021919. Epub 2010 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验