Virumbrales-Del Olmo M, Delgado-Cabello A, Andrada-Chacón A, Sánchez-Benítez J, Urones-Garrote E, Blanco-Gutiérrez V, Torralvo M J, Sáez-Puche R
Departamento Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
MALTA-Consolider Team, Departamento de Química-Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
Phys Chem Chem Phys. 2017 Mar 22;19(12):8363-8372. doi: 10.1039/c6cp08743d.
Single domain superparamagnetic ferrite nanoparticles with the composition MFeO (M = Fe, Co, Zn) have been prepared by thermal decomposition of metal acetylacetonates in diphenyl ether or dibenzyl ether, using oleic acid in the presence of oleylamine as a stabilizing agent. The Fe, Co and Zn ferrite nanoparticles are monodisperse with diameters of 4.9, 4.4 and 4.7 nm, respectively. The TG and IR results indicate that four or six carboxylate groups per nm are bonded at the surface of the particles acting as chelating and/or bridging bidentate ligands depending on the composition. The oleate groups minimize the interparticle interactions in Fe and Zn ferrite samples, while in the Co ferrite sample dipolar interactions produce broad maxima in the ZFC and energy barriers distribution curves. The inversion degree has been estimated from the Raman spectra and the obtained x values have been used to calculate the saturation magnetization and compare them with the experimental M values. Compared to bulk materials, the magnetization value is higher for the Zn ferrite sample due to its mixed spinel cation distribution. For the Co ferrite sample, and probably for the Fe one, the low value of saturation magnetization seems to be due to the surface disordered layer of canted spins. Compared to non-coated nanoparticles with the same composition and similar size, the oleate groups, covalently bonded to the superficial cations, increase the anisotropy field and decrease the magnetization.
通过在二苯醚或二苄醚中热分解金属乙酰丙酮化物,并在油胺存在下使用油酸作为稳定剂,制备了组成式为MFeO(M = Fe、Co、Zn)的单畴超顺磁性铁氧体纳米颗粒。Fe、Co和Zn铁氧体纳米颗粒呈单分散状态,直径分别为4.9、4.4和4.7纳米。热重分析(TG)和红外光谱(IR)结果表明,每纳米有四个或六个羧酸根基团键合在颗粒表面,根据组成不同,它们作为螯合和/或桥连双齿配体。油酸根基团使Fe和Zn铁氧体样品中的颗粒间相互作用最小化,而在Co铁氧体样品中,偶极相互作用在零场冷却(ZFC)曲线和能垒分布曲线中产生宽的最大值。通过拉曼光谱估计了反转度,并使用获得的x值计算饱和磁化强度,并将其与实验测得的M值进行比较。与块状材料相比,Zn铁氧体样品的磁化值更高,这归因于其混合尖晶石阳离子分布。对于Co铁氧体样品,可能还有Fe铁氧体样品,饱和磁化强度较低似乎是由于倾斜自旋的表面无序层所致。与具有相同组成和相似尺寸的未包覆纳米颗粒相比,共价键合到表面阳离子上的油酸根基团增加了各向异性场并降低了磁化强度。