文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米颗粒的磁性:有机涂层的影响。

Magnetism of Nanoparticles: Effect of the Organic Coating.

作者信息

Abdolrahimi Maryam, Vasilakaki Marianna, Slimani Sawssen, Ntallis Nikolaos, Varvaro Gaspare, Laureti Sara, Meneghini Carlo, Trohidou Kalliopi N, Fiorani Dino, Peddis Davide

机构信息

Istituto di Struttura della Materia-CNR, Monterotondo Scalo, 00015 Rome, Italy.

Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Rome, Italy.

出版信息

Nanomaterials (Basel). 2021 Jul 9;11(7):1787. doi: 10.3390/nano11071787.


DOI:10.3390/nano11071787
PMID:34361173
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8308320/
Abstract

The design of novel multifunctional materials based on nanoparticles requires tuning of their magnetic properties, which are strongly dependent on the surface structure. The organic coating represents a unique tool to significantly modify the surface structure trough the bonds between the ligands of the organic molecule and the surface metal atoms. This work presents a critical overview of the effects of the organic coating on the magnetic properties of nanoparticles trough a selection of papers focused on different approaches to control the surface structure and the morphology of nanoparticles' assemblies.

摘要

基于纳米粒子的新型多功能材料的设计需要调整其磁性,而磁性很大程度上取决于表面结构。有机涂层是一种独特的工具,可通过有机分子配体与表面金属原子之间的键合显著改变表面结构。这项工作通过精选一系列专注于控制纳米粒子表面结构和组装形态的不同方法的论文,对有机涂层对纳米粒子磁性的影响进行了批判性综述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/b613b7a34f53/nanomaterials-11-01787-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/dcfdb1c117ef/nanomaterials-11-01787-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/7bfa024a7fb8/nanomaterials-11-01787-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/4efc24623904/nanomaterials-11-01787-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/5afc562d6e5b/nanomaterials-11-01787-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/78e803c0f8ee/nanomaterials-11-01787-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/619db2505dde/nanomaterials-11-01787-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/65d3ee132b59/nanomaterials-11-01787-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/ead6f022f01b/nanomaterials-11-01787-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/3a2c5ff24b90/nanomaterials-11-01787-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/1dffb75756ca/nanomaterials-11-01787-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/b613b7a34f53/nanomaterials-11-01787-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/dcfdb1c117ef/nanomaterials-11-01787-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/7bfa024a7fb8/nanomaterials-11-01787-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/4efc24623904/nanomaterials-11-01787-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/5afc562d6e5b/nanomaterials-11-01787-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/78e803c0f8ee/nanomaterials-11-01787-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/619db2505dde/nanomaterials-11-01787-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/65d3ee132b59/nanomaterials-11-01787-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/ead6f022f01b/nanomaterials-11-01787-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/3a2c5ff24b90/nanomaterials-11-01787-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/1dffb75756ca/nanomaterials-11-01787-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0382/8308320/b613b7a34f53/nanomaterials-11-01787-g011.jpg

相似文献

[1]
Magnetism of Nanoparticles: Effect of the Organic Coating.

Nanomaterials (Basel). 2021-7-9

[2]
Magnetism in nanoparticles: tuning properties with coatings.

J Phys Condens Matter. 2013-12-4

[3]
Engineering the Bio-Nano Interface Using a Multifunctional Coordinating Polymer Coating.

Acc Chem Res. 2020-6-16

[4]
Ever-Evolving Identity of Magnetic Nanoparticles within Human Cells: The Interplay of Endosomal Confinement, Degradation, Storage, and Neocrystallization.

Acc Chem Res. 2020-10-20

[5]
Tuning the magnetism of gold nanoparticles by changing the thiol coating.

Nanoscale. 2020-10-8

[6]
Graphene-Templated Synthesis of Magnetic Metal Organic Framework Nanocomposites for Selective Enrichment of Biomolecules.

ACS Appl Mater Interfaces. 2016-4-27

[7]
Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications.

Chem Rev. 2016-6-29

[8]
Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer.

Acc Chem Res. 2016

[9]
Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core-shell nanoparticles.

J Control Release. 2014-11-11

[10]
Effect of inorganic-organic composite coating on the dispersion of silicon carbide nanoparticles in non-aqueous medium.

Nanotechnology. 2007-4-4

引用本文的文献

[1]
A sustainable Ru catalyzed aerobic oxidation based on high loading magnetic ionic nanoparticles network.

Sci Rep. 2025-8-3

[2]
Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline.

Beilstein J Nanotechnol. 2025-6-2

[3]
Novel Formulation of Ionic Liquid-Based Ferrofluids: Investigation of the Magnetic Properties.

Langmuir. 2025-5-20

[4]
Biorecognition-Based Nanodiagnostics: Maltotriose-Functionalized Magnetic Nanoparticles for Targeted Magnetic Resonance Imaging of Bacterial Infections.

Bioengineering (Basel). 2025-3-15

[5]
Insights into semi-continuous synthesis of iron oxide nanoparticles (IONPs) via thermal decomposition of iron oleate.

Discov Nano. 2025-1-7

[6]
Surfactant-driven optimization of iron-based nanoparticle synthesis: a study on magnetic hyperthermia and endothelial cell uptake.

Nanoscale Adv. 2023-10-4

[7]
Size dependence of the surface spin disorder and surface anisotropy constant in ferrite nanoparticles.

Nanoscale Adv. 2023-8-3

[8]
The Effect of a DC Magnetic Field on the AC Magnetic Properties of Oleic Acid-Coated FeO Nanoparticles.

Materials (Basel). 2023-6-8

[9]
Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy.

Pharmaceutics. 2023-2-23

[10]
Magnetic Nanoclusters Stabilized with Poly[3,4-Dihydroxybenzhydrazide] as Efficient Therapeutic Agents for Cancer Cells Destruction.

Nanomaterials (Basel). 2023-3-3

本文引用的文献

[1]
Magnetic nanomaterials based electrochemical (bio)sensors for food analysis.

Talanta. 2021-6-1

[2]
The role of chemical and microstructural inhomogeneities on interface magnetism.

Nanotechnology. 2021-5-14

[3]
Effect of albumin mediated clustering on the magnetic behavior of MnFeO nanoparticles: experimental and theoretical modeling study.

Nanotechnology. 2019-10-11

[4]
Optimising the magnetic performance of Co ferrite nanoparticles via organic ligand capping.

Nanoscale. 2018-11-12

[5]
The interplay between single particle anisotropy and interparticle interactions in ensembles of magnetic nanoparticles.

Phys Chem Chem Phys. 2018-11-21

[6]
Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems.

Nanomaterials (Basel). 2016-11-23

[7]
Effect of composition and coating on the interparticle interactions and magnetic hardness of MFeO (M = Fe, Co, Zn) nanoparticles.

Phys Chem Chem Phys. 2017-3-22

[8]
Magnetic nanomaterials and sensors for biological detection.

Nanomedicine. 2016-11

[9]
Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes.

Nat Commun. 2015-12-4

[10]
High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions.

Nanoscale. 2015-2-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索