Suppr超能文献

Demerelate:使用 R 计算基于共显性二倍体遗传标记的亲缘关系分析中的个体间相关性。

Demerelate: calculating interindividual relatedness for kinship analysis based on codominant diploid genetic markers using R.

机构信息

Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl von Ossietzky Str. 9-11, 26111, Oldenburg, Germany.

出版信息

Mol Ecol Resour. 2017 Nov;17(6):1371-1377. doi: 10.1111/1755-0998.12666. Epub 2017 Apr 6.

Abstract

The Demerelate package offers algorithms to calculate different interindividual relatedness measurements. Three different allele sharing indices, five pairwise weighted estimates of relatedness and four pairwise weighted estimates with sample size correction are implemented to analyse kinship structures within populations. Statistics are based on randomization tests; modelling relatedness coefficients by logistic regression, modelling relatedness with geographic distance by mantel correlation and comparing mean relatedness between populations using pairwise t-tests. Demerelate provides an advance on previous software packages by including some estimators not available in R to date, along with F , as well as combining analysis of relatedness and spatial structuring. An UPGMA tree visualizes genetic relatedness among individuals. Additionally, Demerelate summarizes information on data sets (allele vs. genotype frequencies; heterozygosity; F values). Demerelate is - to our knowledge - the first R package implementing basic allele sharing indices such as Blouin's M relatedness, the estimator of Wang corrected for sample size (wang ), estimators based on Morans I adapted to genetic relatedness as well as combining all estimators with geographic information. The R environment enables users to better understand relatedness within populations due to the flexibility of Demerelate of accepting different data sets as empirical data, reference data, geographical data and by providing intermediate results. Each statistic and tool can be used separately, which helps to understand the suitability of the data for relatedness analysis, and can be easily implemented in custom pipelines.

摘要

Demerelate 包提供了用于计算不同个体间相关性测量的算法。实现了三个不同的等位基因共享指数、五个成对加权亲缘关系估计值和四个具有样本大小校正的成对加权亲缘关系估计值,以分析群体内的亲缘结构。统计基于随机化检验;通过逻辑回归对亲缘关系系数进行建模,通过 Mantel 相关对亲缘关系与地理距离进行建模,并使用成对 t 检验比较种群间的平均亲缘关系。Demerelate 通过包括一些迄今为止在 R 中不可用的估计量以及 F,以及组合亲缘关系和空间结构分析,在以前的软件包上取得了进展。UPGMA 树可视化个体之间的遗传亲缘关系。此外,Demerelate 还总结了数据集的信息(等位基因与基因型频率;杂合性;F 值)。据我们所知,Demerelate 是第一个实现基本等位基因共享指数的 R 包,例如 Blouin 的 M 亲缘关系、Wang 针对样本大小进行校正的估计值(wang)、基于 Moran's I 适应遗传亲缘关系的估计值,以及将所有估计值与地理信息结合起来。R 环境通过接受不同的数据集作为实证数据、参考数据、地理数据,并提供中间结果,使 Demerelate 能够更好地理解群体内的亲缘关系。每个统计数据和工具都可以单独使用,这有助于理解数据是否适合进行亲缘关系分析,并可以轻松地在自定义管道中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验