Suppr超能文献

稀疏超声成像的迭代重建方法评估

An Assessment of Iterative Reconstruction Methods for Sparse Ultrasound Imaging.

作者信息

Valente Solivan A, Zibetti Marcelo V W, Pipa Daniel R, Maia Joaquim M, Schneider Fabio K

机构信息

Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology, Paraná (UTFPR), Curitiba PR 80230-901, Brazil.

出版信息

Sensors (Basel). 2017 Mar 8;17(3):533. doi: 10.3390/s17030533.

Abstract

Ultrasonic image reconstruction using inverse problems has recently appeared as an alternative to enhance ultrasound imaging over beamforming methods. This approach depends on the accuracy of the acquisition model used to represent transducers, reflectivity, and medium physics. Iterative methods, well known in general sparse signal reconstruction, are also suited for imaging. In this paper, a discrete acquisition model is assessed by solving a linear system of equations by an ℓ 1 -regularized least-squares minimization, where the solution sparsity may be adjusted as desired. The paper surveys 11 variants of four well-known algorithms for sparse reconstruction, and assesses their optimization parameters with the goal of finding the best approach for iterative ultrasound imaging. The strategy for the model evaluation consists of using two distinct datasets. We first generate data from a synthetic phantom that mimics real targets inside a professional ultrasound phantom device. This dataset is contaminated with Gaussian noise with an estimated SNR, and all methods are assessed by their resulting images and performances. The model and methods are then assessed with real data collected by a research ultrasound platform when scanning the same phantom device, and results are compared with beamforming. A distinct real dataset is finally used to further validate the proposed modeling. Although high computational effort is required by iterative methods, results show that the discrete model may lead to images closer to ground-truth than traditional beamforming. However, computing capabilities of current platforms need to evolve before frame rates currently delivered by ultrasound equipments are achievable.

摘要

使用反问题进行超声图像重建最近已成为一种替代方法,用于在波束形成方法的基础上增强超声成像。这种方法依赖于用于表示换能器、反射率和介质物理特性的采集模型的准确性。迭代方法在一般的稀疏信号重建中广为人知,也适用于成像。在本文中,通过求解一个由ℓ1正则化最小二乘最小化得到的线性方程组来评估离散采集模型,其中解的稀疏性可以根据需要进行调整。本文研究了四种著名稀疏重建算法的11种变体,并评估了它们的优化参数,目标是找到迭代超声成像的最佳方法。模型评估策略包括使用两个不同的数据集。我们首先从一个模拟专业超声体模设备内真实目标的合成体模生成数据。该数据集被添加了具有估计信噪比的高斯噪声,所有方法都通过其生成的图像和性能进行评估。然后,当扫描同一个体模设备时,用研究超声平台收集的真实数据对模型和方法进行评估,并将结果与波束形成进行比较。最后使用一个不同的真实数据集进一步验证所提出的建模。尽管迭代方法需要大量的计算,但结果表明,离散模型可能比传统波束形成产生更接近真实情况的图像。然而,在实现当前超声设备的帧率之前,当前平台的计算能力需要进一步发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验