Cheung Warren A, Shao Xiaojian, Morin Andréanne, Siroux Valérie, Kwan Tony, Ge Bing, Aïssi Dylan, Chen Lu, Vasquez Louella, Allum Fiona, Guénard Frédéric, Bouzigon Emmanuelle, Simon Marie-Michelle, Boulier Elodie, Redensek Adriana, Watt Stephen, Datta Avik, Clarke Laura, Flicek Paul, Mead Daniel, Paul Dirk S, Beck Stephan, Bourque Guillaume, Lathrop Mark, Tchernof André, Vohl Marie-Claude, Demenais Florence, Pin Isabelle, Downes Kate, Stunnenberg Hendrick G, Soranzo Nicole, Pastinen Tomi, Grundberg Elin
Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada.
Genome Biol. 2017 Mar 10;18(1):50. doi: 10.1186/s13059-017-1173-7.
The functional impact of genetic variation has been extensively surveyed, revealing that genetic changes correlated to phenotypes lie mostly in non-coding genomic regions. Studies have linked allele-specific genetic changes to gene expression, DNA methylation, and histone marks but these investigations have only been carried out in a limited set of samples.
We describe a large-scale coordinated study of allelic and non-allelic effects on DNA methylation, histone mark deposition, and gene expression, detecting the interrelations between epigenetic and functional features at unprecedented resolution. We use information from whole genome and targeted bisulfite sequencing from 910 samples to perform genotype-dependent analyses of allele-specific methylation (ASM) and non-allelic methylation (mQTL). In addition, we introduce a novel genotype-independent test to detect methylation imbalance between chromosomes. Of the ~2.2 million CpGs tested for ASM, mQTL, and genotype-independent effects, we identify ~32% as being genetically regulated (ASM or mQTL) and ~14% as being putatively epigenetically regulated. We also show that epigenetically driven effects are strongly enriched in repressed regions and near transcription start sites, whereas the genetically regulated CpGs are enriched in enhancers. Known imprinted regions are enriched among epigenetically regulated loci, but we also observe several novel genomic regions (e.g., HOX genes) as being epigenetically regulated. Finally, we use our ASM datasets for functional interpretation of disease-associated loci and show the advantage of utilizing naïve T cells for understanding autoimmune diseases.
Our rich catalogue of haploid methylomes across multiple tissues will allow validation of epigenome association studies and exploration of new biological models for allelic exclusion in the human genome.
基因变异的功能影响已得到广泛研究,结果表明与表型相关的基因变化大多位于非编码基因组区域。研究已将等位基因特异性基因变化与基因表达、DNA甲基化和组蛋白标记联系起来,但这些研究仅在有限的样本集中进行。
我们描述了一项关于等位基因和非等位基因对DNA甲基化、组蛋白标记沉积和基因表达影响的大规模协同研究,以前所未有的分辨率检测表观遗传和功能特征之间的相互关系。我们利用来自910个样本的全基因组和靶向亚硫酸氢盐测序信息,对等位基因特异性甲基化(ASM)和非等位基因甲基化(mQTL)进行基因型依赖性分析。此外,我们引入了一种新的不依赖基因型的检测方法来检测染色体之间的甲基化失衡。在检测ASM、mQTL和不依赖基因型效应的约220万个CpG中,我们确定约32%受基因调控(ASM或mQTL),约14%可能受表观遗传调控。我们还表明,表观遗传驱动的效应在抑制区域和转录起始位点附近高度富集,而受基因调控的CpG在增强子中富集。已知的印记区域在表观遗传调控位点中富集,但我们也观察到几个新的基因组区域(如HOX基因)受表观遗传调控。最后,我们利用我们的ASM数据集对疾病相关位点进行功能解释,并展示了利用幼稚T细胞理解自身免疫性疾病的优势。
我们丰富的跨多个组织的单倍体甲基化组目录将有助于验证表观基因组关联研究,并探索人类基因组中等位基因排斥的新生物学模型。