Technische Universität (TU) Berlin, Postgraduate program "Microenergy Systems", Center for Technology and Society, Office HBS1, Hardenbergstr. 16-18, 10623 Berlin, Germany.
TU Berlin, Department of Environmental Technology, Chair of Circular Economy and Recycling Technology, Office Z2, Straße des 17. Juni 135, 10623 Berlin, Germany.
Sci Total Environ. 2017 Jul 15;590-591:514-530. doi: 10.1016/j.scitotenv.2017.02.205. Epub 2017 Mar 7.
In order to create sustainable systems for resource management, residues from cooking and ecological sanitation (EcoSan) can be employed in recycling-driven soil fertility management. However, the link between energy, sanitation, and agricultural productivity is often neglected. Hence, the potential self-sufficient nature of many smallholdings in sub-Saharan Africa is underexploited.
To compare those cooking and sanitation technologies most commonly used in north-western Tanzania with locally developed alternatives, with respect to (i) resource consumption, (ii) potential to recover resources, and (iii) environmental emissions. This study examines technologies at the household level, and was carried out using material flow analysis (MFA). The specific bioenergy technologies analysed include: three-stone fires; charcoal burners; improved cooking stoves (ICS), such as rocket and microgasifier stoves; and biogas systems. The specific sanitation alternatives studied comprise: pit latrines; two approaches to EcoSan; and septic systems.
The use of ICS reduces total resource consumption; using charcoal or biogas does not. The residues from microgasifiers were analysed as having a substantial recovery potential for carbon (C) and phosphorus (P). The fact that input substrates for biogas digesters are post-agricultural in nature means that biogas slurry is not considered an 'untapped resource' despite its ample nutrient content. Exchanging pit latrines for water-based sanitation systems places heavy pressure on already scarce water resources for local smallholders. In contrast, the implementation of waterless EcoSan facilities significantly promotes nutrient recovery and reduces environmental emissions, particularly through greenhouse gas emission and nutrient leaching.
Recycled outputs from the triple energy-sanitation-agriculture nexus display complementary benefits: residues from cooking can be used to restore organic matter in soils, while sanitation residues contribute to fertilisation. The combination of microgasifiers and EcoSan-facilities is the most appropriate in order to simultaneously optimise resource consumption, reduce environmental impacts, and maximise recycling-based soil management in smallholder farming systems.
为了创建可持续的资源管理系统,可以将烹饪和生态卫生(EcoSan)残留物用于循环驱动的土壤肥力管理。 然而,能源,卫生和农业生产力之间的联系经常被忽视。 因此,撒哈拉以南非洲许多小农户的自给自足潜力未得到充分利用。
将坦桑尼亚西北部最常用的烹饪和卫生技术与当地开发的替代品进行比较,就(i)资源消耗,(ii)资源回收潜力以及(iii)环境排放而言。 本研究在家庭层面上考察了技术,并使用物质流分析(MFA)进行了研究。 分析的具体生物能源技术包括:三石火; 木炭燃烧器; 改进的炉灶(ICS),例如火箭和微燃气炉; 和沼气系统。 研究的特定卫生替代品包括:坑式厕所; 两种生态卫生方法; 和化粪池系统。
使用 ICS 可减少总资源消耗; 使用木炭或沼气则不能。 微燃气炉的残留物具有大量回收碳(C)和磷(P)的潜力。 沼气消化器的输入底物为农业后性质,这意味着尽管沼气浆含有丰富的养分,但它并不是“未开发的资源”。 用基于水的卫生系统代替坑式厕所会给当地小农户本已稀缺的水资源带来沉重压力。 相比之下,实施无水生态卫生设施可大大促进养分回收并减少环境排放,特别是通过温室气体排放和养分淋失。
来自三重能源-卫生-农业关系的回收产物显示出互补的好处:烹饪残留物可用于恢复土壤中的有机物,而卫生残留物有助于施肥。 为了在小农作系统中实现资源消耗的优化,环境影响的降低以及基于回收的土壤管理的最大化,微燃气炉和生态卫生设施的组合是最合适的。