Suppr超能文献

基于数据驱动的山地永久冻土分布制图。

Data-driven mapping of the potential mountain permafrost distribution.

机构信息

Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland.

Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland.

出版信息

Sci Total Environ. 2017 Jul 15;590-591:370-380. doi: 10.1016/j.scitotenv.2017.02.041. Epub 2017 Mar 8.

Abstract

Existing mountain permafrost distribution models generally offer a good overview of the potential extent of this phenomenon at a regional scale. They are however not always able to reproduce the high spatial discontinuity of permafrost at the micro-scale (scale of a specific landform; ten to several hundreds of meters). To overcome this lack, we tested an alternative modelling approach using three classification algorithms belonging to statistics and machine learning: Logistic regression, Support Vector Machines and Random forests. These supervised learning techniques infer a classification function from labelled training data (pixels of permafrost absence and presence) with the aim of predicting the permafrost occurrence where it is unknown. The research was carried out in a 588km area of the Western Swiss Alps. Permafrost evidences were mapped from ortho-image interpretation (rock glacier inventorying) and field data (mainly geoelectrical and thermal data). The relationship between selected permafrost evidences and permafrost controlling factors was computed with the mentioned techniques. Classification performances, assessed with AUROC, range between 0.81 for Logistic regression, 0.85 with Support Vector Machines and 0.88 with Random forests. The adopted machine learning algorithms have demonstrated to be efficient for permafrost distribution modelling thanks to consistent results compared to the field reality. The high resolution of the input dataset (10m) allows elaborating maps at the micro-scale with a modelled permafrost spatial distribution less optimistic than classic spatial models. Moreover, the probability output of adopted algorithms offers a more precise overview of the potential distribution of mountain permafrost than proposing simple indexes of the permafrost favorability. These encouraging results also open the way to new possibilities of permafrost data analysis and mapping.

摘要

现有的山地多年冻土分布模型通常可以很好地概述区域尺度上该现象的潜在范围。然而,它们并不总是能够再现微观尺度(特定地貌的尺度;数十至数百米)上多年冻土的高空间不连续性。为了克服这一不足,我们测试了一种替代建模方法,该方法使用了三种属于统计学和机器学习的分类算法:逻辑回归、支持向量机和随机森林。这些监督学习技术从标记的训练数据(无多年冻土和有多年冻土的像素)中推断出分类函数,目的是预测未知的多年冻土出现的位置。研究在瑞士西部阿尔卑斯山的 588 公里范围内进行。多年冻土的证据是通过正射影像解译(冰川研究)和野外数据(主要是地球物理和热数据)绘制的。使用上述技术计算了选定的多年冻土证据与多年冻土控制因素之间的关系。使用 AUROC 评估的分类性能在 0.81 到 0.88 之间,其中逻辑回归为 0.81,支持向量机为 0.85,随机森林为 0.88。采用的机器学习算法由于与野外实际情况相比具有一致的结果,因此在多年冻土分布建模方面表现出高效。输入数据集的高分辨率(10m)允许在微观尺度上制作地图,模型化的多年冻土空间分布比经典的空间模型不那么乐观。此外,采用算法的概率输出比提出多年冻土适宜性的简单指标更能准确地概述山地多年冻土的潜在分布。这些令人鼓舞的结果还为多年冻土数据分析和制图开辟了新的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验