Suppr超能文献

无序蛋白质中纳米级动力学的可控激活改变结合动力学。

Controllable Activation of Nanoscale Dynamics in a Disordered Protein Alters Binding Kinetics.

作者信息

Callaway David J E, Matsui Tsutomu, Weiss Thomas, Stingaciu Laura R, Stanley Christopher B, Heller William T, Bu Zimei

机构信息

Department of Chemistry and Biochemistry, City College of New York, CUNY, New York, NY 10031, USA.

Stanford Synchrotron Radiation Light Source, Menlo Park, CA 94025, USA.

出版信息

J Mol Biol. 2017 Apr 7;429(7):987-998. doi: 10.1016/j.jmb.2017.03.003. Epub 2017 Mar 8.

Abstract

The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The "tip of the whip" that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the binding of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.

摘要

在一个灵活的无序激活环中特定残基的磷酸化产生对信号转导的精确控制。一个范例是多结构域支架蛋白NHERF1内在无序尾部的S339/S340磷酸化,这会影响NHERF1组装的信号复合物的细胞内定位和运输。使用中子自旋回波光谱法(NSE),我们展示了在磷酸模拟物S339D/S340D突变体中C末端尾部尖端纳米级运动的盐浓度依赖性激发。被释放的“鞭梢”靠近S339/S340磷酸化位点,并位于疏水埃兹蛋白结合基序的两侧。S339D/S340D突变体与埃兹蛋白的FERM结构域结合的动力学缔合速率常数对缓冲盐浓度敏感,与激发的纳米级动力学相关。结果表明,静电作用调节内在无序蛋白的纳米级动力学激活,控制信号伴侣的结合动力学。NSE可以以高度特异性的方式精确指出纳米级动力学变化。

相似文献

1
Controllable Activation of Nanoscale Dynamics in a Disordered Protein Alters Binding Kinetics.
J Mol Biol. 2017 Apr 7;429(7):987-998. doi: 10.1016/j.jmb.2017.03.003. Epub 2017 Mar 8.
2
Dynamic structure of the full-length scaffolding protein NHERF1 influences signaling complex assembly.
J Biol Chem. 2019 Jul 19;294(29):11297-11310. doi: 10.1074/jbc.RA119.008218. Epub 2019 Jun 6.
3
Ezrin induces long-range interdomain allostery in the scaffolding protein NHERF1.
J Mol Biol. 2009 Sep 11;392(1):166-80. doi: 10.1016/j.jmb.2009.07.005. Epub 2009 Jul 8.
4
Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy.
Biophys J. 2010 Nov 17;99(10):3473-82. doi: 10.1016/j.bpj.2010.09.058.
5
6
Essential Strategies for Revealing Nanoscale Protein Dynamics by Neutron Spin Echo Spectroscopy.
Methods Enzymol. 2016;566:253-70. doi: 10.1016/bs.mie.2015.05.011. Epub 2015 Jun 13.
7
Structural basis for NHERF1 PDZ domain binding.
Biochemistry. 2012 Apr 10;51(14):3110-20. doi: 10.1021/bi201213w. Epub 2012 Mar 27.
8
Nanoscale protein dynamics: a new frontier for neutron spin echo spectroscopy.
Eur Phys J E Soft Matter. 2013 Jul;36(7):76. doi: 10.1140/epje/i2013-13076-1. Epub 2013 Jul 17.
9
Regulation of merlin by protein phosphatase 1-TIMAP and EBP50 in endothelial cells.
Int J Biochem Cell Biol. 2017 Jan;82:10-17. doi: 10.1016/j.biocel.2016.11.010. Epub 2016 Nov 18.
10
A conformational switch in the scaffolding protein NHERF1 controls autoinhibition and complex formation.
J Biol Chem. 2010 Mar 26;285(13):9981-9994. doi: 10.1074/jbc.M109.074005. Epub 2009 Dec 30.

引用本文的文献

1
Nanoscale dynamics of the cadherin-catenin complex bound to vinculin revealed by neutron spin echo spectroscopy.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2408459121. doi: 10.1073/pnas.2408459121. Epub 2024 Sep 19.
3
Dynamic structure of the full-length scaffolding protein NHERF1 influences signaling complex assembly.
J Biol Chem. 2019 Jul 19;294(29):11297-11310. doi: 10.1074/jbc.RA119.008218. Epub 2019 Jun 6.
5
α-Catenin Structure and Nanoscale Dynamics in Solution and in Complex with F-Actin.
Biophys J. 2018 Aug 21;115(4):642-654. doi: 10.1016/j.bpj.2018.07.005. Epub 2018 Jul 11.

本文引用的文献

1
Visualizing the nanoscale: protein internal dynamics and neutron spin echo spectroscopy.
Curr Opin Struct Biol. 2017 Feb;42:1-5. doi: 10.1016/j.sbi.2016.10.001. Epub 2016 Oct 15.
5
Structural basis of the pH-dependent assembly of a botulinum neurotoxin complex.
J Mol Biol. 2014 Nov 11;426(22):3773-3782. doi: 10.1016/j.jmb.2014.09.009. Epub 2014 Sep 18.
6
Physicochemical mechanisms of protein regulation by phosphorylation.
Front Genet. 2014 Aug 7;5:270. doi: 10.3389/fgene.2014.00270. eCollection 2014.
7
An unusually powerful mode of low-frequency sound interference due to defective hair bundles of the auditory outer hair cells.
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9307-12. doi: 10.1073/pnas.1405322111. Epub 2014 Jun 11.
8
Molecular conformation of the full-length tumor suppressor NF2/Merlin--a small-angle neutron scattering study.
J Mol Biol. 2014 Jul 29;426(15):2755-68. doi: 10.1016/j.jmb.2014.05.011. Epub 2014 May 29.
9
Classification of intrinsically disordered regions and proteins.
Chem Rev. 2014 Jul 9;114(13):6589-631. doi: 10.1021/cr400525m. Epub 2014 Apr 29.
10
Architectures of whole-module and bimodular proteins from the 6-deoxyerythronolide B synthase.
J Mol Biol. 2014 May 29;426(11):2229-45. doi: 10.1016/j.jmb.2014.03.015. Epub 2014 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验