Cunningham William A, Koscik Timothy R
a Department of Psychology and Rotman School of Management , University of Toronto , Toronto , Canada.
Cogn Neurosci. 2017 Jul;8(3):147-149. doi: 10.1080/17588928.2017.1299122. Epub 2017 Mar 13.
We seek to balance the need to minimize false positives with the need to maximize power. We propose a compartmentalized series of analyses that a priori selects regions of voxels that have different degrees of predicted involvement. Alpha thresholds are allocated based on the strength of expected theoretical relationships. For example, confirmatory studies might allocate most of the error to the regions predicted from the literature and thus use a relatively more liberal threshold on these voxels. Simulations reveal that this technique increases power for hypothesized regions, while maintaining a constant false-positive rate and allowing exploratory analysis.
我们力求在将假阳性降至最低的需求与将效能最大化的需求之间取得平衡。我们提出了一系列分阶段的分析方法,这些方法会事先选择具有不同程度预测受累情况的体素区域。根据预期理论关系的强度来分配阿尔法阈值。例如,验证性研究可能会将大部分误差分配到文献中预测的区域,因此对这些体素使用相对更宽松的阈值。模拟结果表明,这种技术在保持恒定假阳性率并允许进行探索性分析的同时,提高了假设区域的效能。