Suppr超能文献

用于疾病诊断的不完整多模态数据的稳定性加权矩阵填充

Stability-Weighted Matrix Completion of Incomplete Multi-modal Data for Disease Diagnosis.

作者信息

Thung Kim-Han, Adeli Ehsan, Yap Pew-Thian, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina, Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9901:88-96. doi: 10.1007/978-3-319-46723-8_11. Epub 2016 Oct 2.

Abstract

Effective utilization of heterogeneous multi-modal data for Alzheimer's Disease (AD) diagnosis and prognosis has always been hampered by incomplete data. One method to deal with this is low-rank matrix completion (LRMC), which simultaneous imputes missing data features and target values of interest. Although LRMC yields reasonable results, it implicitly weights features from all the modalities equally, ignoring the differences in discriminative power of features from different modalities. In this paper, we propose (swLRMC), an LRMC improvement that weights features and modalities according to their and . We introduce a method, called , to utilize subsampling techniques and outcomes from a range of hyper-parameters of sparse feature learning to obtain a stable set of weights. Incorporating these weights into LRMC, swLRMC can better account for differences in features and modalities for improving diagnosis. Experimental results confirm that the proposed method outperforms the conventional LRMC, feature-selection based LRMC, and other state-of-the-art methods.

摘要

阿尔茨海默病(AD)诊断和预后中异构多模态数据的有效利用一直受到数据不完整的阻碍。处理这个问题的一种方法是低秩矩阵补全(LRMC),它同时插补缺失的数据特征和感兴趣的目标值。尽管LRMC产生了合理的结果,但它隐含地对所有模态的特征进行同等加权,忽略了来自不同模态的特征在判别力上的差异。在本文中,我们提出了(swLRMC),这是一种对LRMC的改进,它根据特征和模态的[具体内容缺失]对特征和模态进行加权。我们引入了一种名为[具体方法名称缺失]的方法,利用子采样技术和一系列稀疏特征学习超参数的结果来获得一组稳定的权重。将这些权重纳入LRMC,swLRMC可以更好地考虑特征和模态的差异以改善诊断。实验结果证实,所提出的方法优于传统的LRMC、基于特征选择的LRMC和其他现有技术方法。

相似文献

1
Stability-Weighted Matrix Completion of Incomplete Multi-modal Data for Disease Diagnosis.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:88-96. doi: 10.1007/978-3-319-46723-8_11. Epub 2016 Oct 2.
2
Structured Sparse Kernel Learning for Imaging Genetics Based Alzheimer's Disease Diagnosis.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:70-78. doi: 10.1007/978-3-319-46723-8_9. Epub 2016 Oct 2.
3
Diagnosis of Alzheimer's Disease Using View-Aligned Hypergraph Learning with Incomplete Multi-modality Data.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:308-316. doi: 10.1007/978-3-319-46720-7_36. Epub 2016 Oct 2.
4
Discriminative multi-task feature selection for multi-modality classification of Alzheimer's disease.
Brain Imaging Behav. 2016 Sep;10(3):739-49. doi: 10.1007/s11682-015-9437-x.
6
Multimodal Neuroimaging Feature Learning With Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer's Disease.
IEEE J Biomed Health Inform. 2018 Jan;22(1):173-183. doi: 10.1109/JBHI.2017.2655720. Epub 2017 Jan 19.
7
Latent Representation Learning for Alzheimer's Disease Diagnosis With Incomplete Multi-Modality Neuroimaging and Genetic Data.
IEEE Trans Med Imaging. 2019 Oct;38(10):2411-2422. doi: 10.1109/TMI.2019.2913158. Epub 2019 Apr 25.
8
Alzheimer's disease diagnosis from multi-modal data via feature inductive learning and dual multilevel graph neural network.
Med Image Anal. 2024 Oct;97:103213. doi: 10.1016/j.media.2024.103213. Epub 2024 May 28.
9
Latent feature representation learning for Alzheimer's disease classification.
Comput Biol Med. 2022 Nov;150:106116. doi: 10.1016/j.compbiomed.2022.106116. Epub 2022 Sep 21.
10
Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment.
Comput Methods Programs Biomed. 2015 Nov;122(2):182-90. doi: 10.1016/j.cmpb.2015.08.004. Epub 2015 Aug 10.

引用本文的文献

1
Brain-Wide Genome-Wide Association Study for Alzheimer's Disease via Joint Projection Learning and Sparse Regression Model.
IEEE Trans Biomed Eng. 2019 Jan;66(1):165-175. doi: 10.1109/TBME.2018.2824725. Epub 2018 Apr 9.
2
The State of the NIH BRAIN Initiative.
J Neurosci. 2018 Jul 18;38(29):6427-6438. doi: 10.1523/JNEUROSCI.3174-17.2018. Epub 2018 Jun 19.
4
Maximum Mean Discrepancy Based Multiple Kernel Learning for Incomplete Multimodality Neuroimaging Data.
Med Image Comput Comput Assist Interv. 2017 Sep;10435:72-80. doi: 10.1007/978-3-319-66179-7_9. Epub 2017 Sep 4.
5
Multi-stage Diagnosis of Alzheimer's Disease with Incomplete Multimodal Data via Multi-task Deep Learning.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017 Sep;10553:160-168. doi: 10.1007/978-3-319-67558-9_19. Epub 2017 Sep 9.

本文引用的文献

1
Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans.
Brain Struct Funct. 2016 Nov;221(8):3979-3995. doi: 10.1007/s00429-015-1140-6. Epub 2015 Nov 24.
3
Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion.
Neuroimage. 2014 May 1;91:386-400. doi: 10.1016/j.neuroimage.2014.01.033. Epub 2014 Jan 27.
4
Using multiparametric data with missing features for learning patterns of pathology.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):468-75. doi: 10.1007/978-3-642-33454-2_58.
5
Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data.
Neuroimage. 2012 Jul 2;61(3):622-32. doi: 10.1016/j.neuroimage.2012.03.059. Epub 2012 Mar 29.
6
Robust deformable-surface-based skull-stripping for large-scale studies.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):635-42. doi: 10.1007/978-3-642-23626-6_78.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验