Zhu Xiaofeng, Thung Kim-Han, Adeli Ehsan, Zhang Yu, Shen Dinggang
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.
Med Image Comput Comput Assist Interv. 2017 Sep;10435:72-80. doi: 10.1007/978-3-319-66179-7_9. Epub 2017 Sep 4.
It is challenging to use incomplete multimodality data for Alzheimer's Disease (AD) diagnosis. The current methods to address this challenge, such as low-rank matrix completion (., imputing the missing values and unknown labels simultaneously) and multi-task learning (., defining one regression task for each combination of modalities and then learning them jointly), are unable to model the complex data-to-label relationship in AD diagnosis and also ignore the heterogeneity among the modalities. In light of this, we propose a new Maximum Mean Discrepancy (MMD) based Multiple Kernel Learning (MKL) method for AD diagnosis using incomplete multimodality data. Specifically, we map all the samples from different modalities into a Reproducing Kernel Hilbert Space (RKHS), by devising a new MMD algorithm. The proposed MMD method incorporates data distribution matching, pair-wise sample matching and feature selection in an unified formulation, thus alleviating the modality heterogeneity issue and making all the samples comparable to share a common classifier in the RKHS. The resulting classifier obviously captures the nonlinear data-to-label relationship. We have tested our method using MRI and PET data from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset for AD diagnosis. The experimental results show that our method outperforms other methods.
使用不完整的多模态数据进行阿尔茨海默病(AD)诊断具有挑战性。当前应对这一挑战的方法,如低秩矩阵补全(即同时估算缺失值和未知标签)和多任务学习(即为每种模态组合定义一个回归任务,然后联合学习这些任务),无法对AD诊断中复杂的数据到标签关系进行建模,并且还忽略了模态之间的异质性。鉴于此,我们提出了一种基于最大均值差异(MMD)的新型多核学习(MKL)方法,用于使用不完整的多模态数据进行AD诊断。具体而言,我们通过设计一种新的MMD算法,将来自不同模态的所有样本映射到再生核希尔伯特空间(RKHS)中。所提出的MMD方法在统一的公式中纳入了数据分布匹配、成对样本匹配和特征选择,从而缓解了模态异质性问题,并使所有样本具有可比性,以便在RKHS中共享一个通用分类器。由此产生的分类器显然能够捕捉非线性的数据到标签关系。我们使用来自阿尔茨海默病神经影像倡议(ADNI)数据集的MRI和PET数据对我们的方法进行了AD诊断测试。实验结果表明,我们的方法优于其他方法。