Suppr超能文献

基于成像遗传学的阿尔茨海默病诊断的结构化稀疏核学习

Structured Sparse Kernel Learning for Imaging Genetics Based Alzheimer's Disease Diagnosis.

作者信息

Peng Jailin, An Le, Zhu Xiaofeng, Jin Yan, Shen Dinggang

机构信息

Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA.

College of Computer Science and Technology, Huaqiao University, Xiamen, China.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9901:70-78. doi: 10.1007/978-3-319-46723-8_9. Epub 2016 Oct 2.

Abstract

A kernel-learning based method is proposed to integrate multimodal imaging and genetic data for Alzheimer's disease (AD) diagnosis. To facilitate structured feature learning in kernel space, we represent each feature with a kernel and then group kernels according to modalities. In view of the highly redundant features within each modality and also the complementary information across modalities, we introduce a novel structured sparsity regularizer for feature selection and fusion, which is different from conventional lasso and group lasso based methods. Specifically, we enforce a penalty on kernel weights to simultaneously select features sparsely within each modality and densely combine different modalities. We have evaluated the proposed method using magnetic resonance imaging (MRI) and positron emission tomography (PET), and single-nucleotide polymorphism (SNP) data of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The effectiveness of our method is demonstrated by both the clearly improved prediction accuracy and the discovered brain regions and SNPs relevant to AD.

摘要

提出了一种基于核学习的方法,用于整合多模态成像和基因数据以诊断阿尔茨海默病(AD)。为了便于在核空间中进行结构化特征学习,我们用一个核来表示每个特征,然后根据模态对核进行分组。鉴于每个模态内存在高度冗余的特征以及跨模态的互补信息,我们引入了一种新颖的结构化稀疏正则化器用于特征选择和融合,这与基于传统套索和组套索的方法不同。具体而言,我们对核权重施加惩罚,以便在每个模态内稀疏地选择特征,并密集地组合不同模态。我们使用来自阿尔茨海默病神经影像倡议(ADNI)数据库的受试者的磁共振成像(MRI)、正电子发射断层扫描(PET)和单核苷酸多态性(SNP)数据对所提出的方法进行了评估。我们方法的有效性通过明显提高的预测准确性以及发现的与AD相关的脑区和SNP得到了证明。

相似文献

1
9
Multi-modality canonical feature selection for Alzheimer's disease diagnosis.用于阿尔茨海默病诊断的多模态规范特征选择
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):162-9. doi: 10.1007/978-3-319-10470-6_21.

引用本文的文献

3
Multivariate Analysis and Modelling of multiple Brain endOphenotypes: Let's MAMBO!多种脑内表型的多变量分析与建模:让我们行动起来!
Comput Struct Biotechnol J. 2021 Oct 13;19:5800-5810. doi: 10.1016/j.csbj.2021.10.019. eCollection 2021.
4
Brain Imaging Genomics: Integrated Analysis and Machine Learning.脑成像基因组学:综合分析与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):125-162. doi: 10.1109/JPROC.2019.2947272. Epub 2019 Oct 29.

本文引用的文献

6
Multimodal classification of Alzheimer's disease and mild cognitive impairment.阿尔茨海默病和轻度认知障碍的多模态分类。
Neuroimage. 2011 Apr 1;55(3):856-67. doi: 10.1016/j.neuroimage.2011.01.008. Epub 2011 Jan 12.
7
MKL for robust multi-modality AD classification.用于稳健多模态阿尔茨海默病分类的MKL
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):786-94. doi: 10.1007/978-3-642-04271-3_95.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验