Suppr超能文献

利用飞秒激光诱导烧蚀在纳米纤维上制备一维光子晶体腔

Fabrication of 1-D Photonic Crystal Cavity on a Nanofiber Using Femtosecond Laser-induced Ablation.

作者信息

Nayak Kali Prasanna, Keloth Jameesh, Hakuta Kohzo

机构信息

Center for Photonic Innovations, University of Electro-Communications.

Center for Photonic Innovations, University of Electro-Communications;

出版信息

J Vis Exp. 2017 Feb 25(120):55136. doi: 10.3791/55136.

Abstract

We present a protocol for fabricating 1-D Photonic Crystal (PhC) cavities on subwavelength-diameter tapered optical fibers, optical nanofibers, using femtosecond laser-induced ablation. We show that thousands of periodic nano-craters are fabricated on an optical nanofiber by irradiating with just a single femtosecond laser pulse. For a typical sample, periodic nano-craters with a period of 350 nm and with diameter gradually varying from 50 - 250 nm over a length of 1 mm are fabricated on a nanofiber with diameter around 450 - 550 nm. A key aspect of such a nanofabrication is that the nanofiber itself acts as a cylindrical lens and focuses the femtosecond laser beam on its shadow surface. Moreover, the single-shot fabrication makes it immune to mechanical instabilities and other fabrication imperfections. Such periodic nano-craters on nanofiber, act as a 1-D PhC and enable strong and broadband reflection while maintaining the high transmission out of the stopband. We also present a method to control the profile of the nano-crater array to fabricate apodized and defect-induced PhC cavities on the nanofiber. The strong confinement of the field, both transverse and longitudinal, in the nanofiber-based PhC cavities and the efficient integration to the fiber networks, may open new possibilities for nanophotonic applications and quantum information science.

摘要

我们提出了一种利用飞秒激光诱导烧蚀在亚波长直径的锥形光纤(即光学纳米光纤)上制备一维光子晶体(PhC)腔的方案。我们展示了通过仅用单个飞秒激光脉冲照射,就能在光学纳米光纤上制造出数千个周期性纳米坑。对于一个典型样本,在直径约450 - 550纳米的纳米光纤上制造出了周期为350纳米、直径在1毫米长度范围内从50 - 250纳米逐渐变化的周期性纳米坑。这种纳米制造的一个关键方面是,纳米光纤本身充当柱面透镜,并将飞秒激光束聚焦在其阴影表面。此外,单次制造使其不受机械不稳定性和其他制造缺陷的影响。纳米光纤上的这种周期性纳米坑充当一维光子晶体,能实现强而宽带的反射,同时在阻带之外保持高透射率。我们还提出了一种控制纳米坑阵列轮廓的方法,以在纳米光纤上制造变迹和缺陷诱导的光子晶体腔。基于纳米光纤的光子晶体腔中场在横向和纵向的强限制以及与光纤网络的有效集成,可能为纳米光子应用和量子信息科学开辟新的可能性。

相似文献

3
Optical nanofiber-based photonic crystal cavity.基于光纤的光子晶体腔。
Opt Lett. 2014 Jan 15;39(2):232-5. doi: 10.1364/OL.39.000232.
4
Ablation characteristics of electrospun core-shell nanofiber by femtosecond laser.飞秒激光对电纺核壳纳米纤维的烧蚀特性
Mater Sci Eng C Mater Biol Appl. 2016 Aug 1;65:232-9. doi: 10.1016/j.msec.2016.04.046. Epub 2016 Apr 16.

本文引用的文献

1
Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity.囚禁单原子与全光纤腔的强耦合。
Phys Rev Lett. 2015 Aug 28;115(9):093603. doi: 10.1103/PhysRevLett.115.093603. Epub 2015 Aug 26.
2
Optical nanofiber-based photonic crystal cavity.基于光纤的光子晶体腔。
Opt Lett. 2014 Jan 15;39(2):232-5. doi: 10.1364/OL.39.000232.
8
Demonstration of a spaser-based nanolaser.基于受激辐射损耗(SPASER)的纳米激光器的演示。
Nature. 2009 Aug 27;460(7259):1110-2. doi: 10.1038/nature08318. Epub 2009 Aug 16.
10
Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence.
Opt Express. 2007 Apr 30;15(9):5431-8. doi: 10.1364/oe.15.005431.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验