Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U
Center for Materials Research, Norfolk State University, Norfolk, Virginia 23504, USA.
Nature. 2009 Aug 27;460(7259):1110-2. doi: 10.1038/nature08318. Epub 2009 Aug 16.
One of the most rapidly growing areas of physics and nanotechnology focuses on plasmonic effects on the nanometre scale, with possible applications ranging from sensing and biomedicine to imaging and information technology. However, the full development of nanoplasmonics is hindered by the lack of devices that can generate coherent plasmonic fields. It has been proposed that in the same way as a laser generates stimulated emission of coherent photons, a 'spaser' could generate stimulated emission of surface plasmons (oscillations of free electrons in metallic nanostructures) in resonating metallic nanostructures adjacent to a gain medium. But attempts to realize a spaser face the challenge of absorption loss in metal, which is particularly strong at optical frequencies. The suggestion to compensate loss by optical gain in localized and propagating surface plasmons has been implemented recently and even allowed the amplification of propagating surface plasmons in open paths. Still, these experiments and the reported enhancement of the stimulated emission of dye molecules in the presence of metallic nanoparticles lack the feedback mechanism present in a spaser. Here we show that 44-nm-diameter nanoparticles with a gold core and dye-doped silica shell allow us to completely overcome the loss of localized surface plasmons by gain and realize a spaser. And in accord with the notion that only surface plasmon resonances are capable of squeezing optical frequency oscillations into a nanoscopic cavity to enable a true nanolaser, we show that outcoupling of surface plasmon oscillations to photonic modes at a wavelength of 531 nm makes our system the smallest nanolaser reported to date-and to our knowledge the first operating at visible wavelengths. We anticipate that now it has been realized experimentally, the spaser will advance our fundamental understanding of nanoplasmonics and the development of practical applications.
物理学和纳米技术中发展最为迅速的领域之一聚焦于纳米尺度的等离子体效应,其潜在应用范围广泛,涵盖传感、生物医学、成像以及信息技术等领域。然而,纳米等离子体学的全面发展受到了能够产生相干等离子体场的器件匮乏的阻碍。有人提出,就如同激光产生相干光子的受激发射一样,“表面等离激元激射器(spaser)”能够在与增益介质相邻的共振金属纳米结构中产生表面等离子体(金属纳米结构中自由电子的振荡)的受激发射。但是,实现表面等离激元激射器面临着金属吸收损耗的挑战,这种损耗在光频下尤为显著。最近,通过在局域表面等离子体和传播表面等离子体中利用光学增益来补偿损耗的建议已得以实施,甚至实现了开放路径中传播表面等离子体的放大。尽管如此,这些实验以及在金属纳米颗粒存在下染料分子受激发射增强的报道都缺乏表面等离激元激射器所具备的反馈机制。在此,我们展示了直径为44纳米、具有金核和掺杂染料的二氧化硅壳层的纳米颗粒,能够使我们通过增益完全克服局域表面等离子体的损耗,从而实现表面等离激元激射器。并且,根据只有表面等离子体共振能够将光频振荡压缩到纳米级腔中以实现真正的纳米激光器这一概念,我们表明表面等离子体振荡在531纳米波长下与光子模式的外耦合使我们的系统成为迄今为止报道的最小的纳米激光器——据我们所知,也是首个在可见光波长下工作的纳米激光器。我们预计,既然表面等离激元激射器已通过实验实现,它将推动我们对纳米等离子体学的基础理解以及实际应用的发展。