Department of Physics, University of Warwick , Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom.
Department of Physics, Clarendon Laboratory, University of Oxford , Parks Road, Oxford, OX1 3PU, United Kingdom.
Nano Lett. 2017 Apr 12;17(4):2506-2511. doi: 10.1021/acs.nanolett.7b00231. Epub 2017 Mar 16.
Colossal magnetoresistance (CMR) is demonstrated at terahertz (THz) frequencies by using terahertz time-domain magnetospectroscopy to examine vertically aligned nanocomposites (VANs) and planar thin films of LaSrMnO. At the Curie temperature (room temperature), the THz conductivity of the VAN was dramatically enhanced by over 2 orders of magnitude under the application of a magnetic field with a non-Drude THz conductivity that increased with frequency. The direct current (dc) CMR of the VAN is controlled by extrinsic magnetotransport mechanisms such as spin-polarized tunneling between nanograins. In contrast, we find that THz CMR is dominated by intrinsic, intragrain transport: the mean free path was smaller than the nanocolumn size, and the planar thin-film exhibited similar THz CMR to the VAN. Surprisingly, the observed colossal THz magnetoresistance suggests that the magnetoresistance can be large for alternating current motion on nanometer length scales, even when the magnetoresistance is negligible on the macroscopic length scales probed by dc transport. This suggests that colossal magnetoresistance at THz frequencies may find use in nanoelectronics and in THz optical components controlled by magnetic fields. The VAN can be scaled in thickness while retaining a high structural quality and offers a larger THz CMR at room temperature than the planar film.
太赫兹(THz)频率下的巨磁电阻(CMR)通过太赫兹时域磁光谱学来检测垂直排列纳米复合材料(VAN)和 LaSrMnO 的平面薄膜得以证明。在居里温度(室温)下,VAN 在磁场作用下的太赫兹电导率显著增强了 2 个数量级以上,具有非德拜太赫兹电导率,其随频率增加而增加。VAN 的直流(dc)CMR 受外自旋极化隧道等磁输运机制控制。相比之下,我们发现太赫兹 CMR 主要由本征的晶粒内输运决定:平均自由程小于纳米柱的尺寸,而平面薄膜表现出与 VAN 相似的太赫兹 CMR。令人惊讶的是,观察到的巨大太赫兹磁电阻表明,即使在 dc 输运探测的宏观长度尺度上磁电阻可以忽略不计,交流电在纳米尺度上的运动也可能具有较大的磁电阻。这表明,太赫兹频率下的巨磁电阻可能在纳米电子学和磁场控制的太赫兹光学元件中有应用。VAN 可以在保持高结构质量的同时增加厚度,并且在室温下提供比平面薄膜更大的太赫兹 CMR。