IEEE Trans Pattern Anal Mach Intell. 2018 Feb;40(2):289-303. doi: 10.1109/TPAMI.2017.2679100. Epub 2017 Mar 7.
Given a large collection of unlabeled face images, we address the problem of clustering faces into an unknown number of identities. This problem is of interest in social media, law enforcement, and other applications, where the number of faces can be of the order of hundreds of million, while the number of identities (clusters) can range from a few thousand to millions. To address the challenges of run-time complexity and cluster quality, we present an approximate Rank-Order clustering algorithm that performs better than popular clustering algorithms (k-Means and Spectral). Our experiments include clustering up to 123 million face images into over 10 million clusters. Clustering results are analyzed in terms of external (known face labels) and internal (unknown face labels) quality measures, and run-time. Our algorithm achieves an F-measure of 0.87 on the LFW benchmark (13 K faces of 5,749 individuals), which drops to 0.27 on the largest dataset considered (13 K faces in LFW + 123M distractor images). Additionally, we show that frames in the YouTube benchmark can be clustered with an F-measure of 0.71. An internal per-cluster quality measure is developed to rank individual clusters for manual exploration of high quality clusters that are compact and isolated.
给定一个大型的未标记人脸图像集合,我们解决了将人脸聚类成未知数量身份的问题。这个问题在社交媒体、执法和其他应用中很感兴趣,其中人脸的数量可能达到数亿,而身份(聚类)的数量可能从几千到几百万不等。为了解决运行时复杂度和聚类质量的挑战,我们提出了一种近似的秩聚类算法,该算法比流行的聚类算法(k-Means 和 Spectral)表现更好。我们的实验包括将多达 1.23 亿张人脸图像聚类到超过 1000 万个聚类中。聚类结果从外部(已知人脸标签)和内部(未知人脸标签)质量度量以及运行时进行分析。我们的算法在 LFW 基准测试中(5749 个人的 13K 张人脸)的 F-measure 达到 0.87,在考虑的最大数据集(LFW 中的 13K 张人脸+1.23 亿个干扰图像)中降至 0.27。此外,我们还展示了 YouTube 基准测试中的帧可以聚类,其 F-measure 达到 0.71。开发了一种内部每聚类质量度量标准,用于对单个聚类进行排名,以便手动探索紧凑且孤立的高质量聚类。