Suppr超能文献

基于图割的迭代最小割聚类

Iterative Min Cut Clustering Based on Graph Cuts.

作者信息

Liu Bowen, Liu Zhaoying, Li Yujian, Zhang Ting, Zhang Zhilin

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China.

出版信息

Sensors (Basel). 2021 Jan 11;21(2):474. doi: 10.3390/s21020474.

Abstract

Clustering nonlinearly separable datasets is always an important problem in unsupervised machine learning. Graph cut models provide good clustering results for nonlinearly separable datasets, but solving graph cut models is an NP hard problem. A novel graph-based clustering algorithm is proposed for nonlinearly separable datasets. The proposed method solves the min cut model by iteratively computing only one simple formula. Experimental results on synthetic and benchmark datasets indicate the potential of the proposed method, which is able to cluster nonlinearly separable datasets with less running time.

摘要

在无监督机器学习中,对非线性可分数据集进行聚类一直是一个重要问题。图割模型为非线性可分数据集提供了良好的聚类结果,但求解图割模型是一个NP难问题。针对非线性可分数据集,提出了一种新颖的基于图的聚类算法。该方法通过迭代计算一个简单公式来求解最小割模型。在合成数据集和基准数据集上的实验结果表明了该方法的潜力,它能够以更短的运行时间对非线性可分数据集进行聚类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/730a/7827042/b7a918ddd701/sensors-21-00474-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验