Suppr超能文献

鞭毛同步化是用于纤毛和鞭毛研究的细胞周期同步化的一种简单替代方法。

Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

作者信息

Dutta Soumita, Avasthi Prachee

机构信息

Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.

Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Ophthalmology, University of Kansas Medical Center, Kansas City, Kansas, USA.

出版信息

mSphere. 2017 Mar 8;2(2). doi: 10.1128/mSphere.00003-17. eCollection 2017 Mar-Apr.

Abstract

The unicellular green alga is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia.

摘要

单细胞绿藻是研究纤毛功能和组装的理想模式生物。在各种因素对鞭毛结构和功能的生物学和生化效应分析中,同步培养有利于将变异性降至最低。在此,我们描述了一种方法,该方法在鞭毛长度方面可实现100%同步,但在细胞周期方面则不然。该方法需要通过切除整个细胞群体诱导鞭毛再生,并限制再生时间。这导致在截肢后3小时鞭毛长度的分布达到最大程度的均匀。我们发现,在鞭毛同步过程中限时进行新蛋白质合成可限制有限鞭毛蛋白未组装池中的变异性以及鞭毛长度的变异性,而不会影响细胞体积范围。我们还发现,正常再生的长鞭毛和短鞭毛突变体分别需要更长和更短的同步时间。通过使用一种仅需数小时且无需更换培养基的简单方法将鞭毛长度变异性降至最低,鞭毛同步便于检测由化学和基因扰动导致的鞭毛长度的微小变化。这种方法增强了我们探究纤毛大小调控的基本生物学及相关疾病病因的能力。纤毛和鞭毛是高度保守的天线状细胞器,几乎存在于所有哺乳动物细胞类型中。它们执行感觉和运动功能,对众多生理和发育过程都有贡献。其组装和功能缺陷与从视网膜变性到癌症等广泛的人类疾病有关。是用于研究哺乳动物纤毛形成和功能的藻类模型系统。在此,我们报告一种简单的同步方法,该方法通过最小化群体中的变异性来检测纤毛长度的微小变化。我们发现这种方法改变了细胞大小与鞭毛生长积累的蛋白量之间的关键关系。这为揭示纤毛新调节因子提供了一种快速替代传统细胞同步方法的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验