Suppr超能文献

基于机器视觉的采后果蔬品质控制测量系统

Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality Control in Postharvest.

作者信息

Blasco José, Munera Sandra, Aleixos Nuria, Cubero Sergio, Molto Enrique

机构信息

IVIA, Centro de Agroingeniería, Cra. Moncada-Náquera km 5, 46113, Moncada, Spain.

Departamento de Ingeniería Gráfica, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.

出版信息

Adv Biochem Eng Biotechnol. 2017;161:71-91. doi: 10.1007/10_2016_51.

Abstract

Individual items of any agricultural commodity are different from each other in terms of colour, shape or size. Furthermore, as they are living thing, they change their quality attributes over time, thereby making the development of accurate automatic inspection machines a challenging task. Machine vision-based systems and new optical technologies make it feasible to create non-destructive control and monitoring tools for quality assessment to ensure adequate accomplishment of food standards. Such systems are much faster than any manual non-destructive examination of fruit and vegetable quality, thus allowing the whole production to be inspected with objective and repeatable criteria. Moreover, current technology makes it possible to inspect the fruit in spectral ranges beyond the sensibility of the human eye, for instance in the ultraviolet and near-infrared regions. Machine vision-based applications require the use of multiple technologies and knowledge, ranging from those related to image acquisition (illumination, cameras, etc.) to the development of algorithms for spectral image analysis. Machine vision-based systems for inspecting fruit and vegetables are targeted towards different purposes, from in-line sorting into commercial categories to the detection of contaminants or the distribution of specific chemical compounds on the product's surface. This chapter summarises the current state of the art in these techniques, starting with systems based on colour images for the inspection of conventional colour, shape or external defects and then goes on to consider recent developments in spectral image analysis for internal quality assessment or contaminant detection.

摘要

任何农产品的单个个体在颜色、形状或大小方面都彼此不同。此外,由于它们是有生命的物体,其品质属性会随时间变化,因此开发精确的自动检测机器是一项具有挑战性的任务。基于机器视觉的系统和新的光学技术使得创建用于质量评估的无损控制和监测工具成为可能,以确保充分达到食品标准。此类系统比任何人工对水果和蔬菜质量的无损检测都要快得多,从而能够以客观且可重复的标准对整个生产过程进行检查。此外,当前技术使得在超出人眼敏感度的光谱范围内检测水果成为可能,例如在紫外线和近红外区域。基于机器视觉的应用需要使用多种技术和知识,从与图像采集相关的技术(照明、相机等)到光谱图像分析算法的开发。用于检测水果和蔬菜的基于机器视觉的系统针对不同目的,从在线分类为商业类别到检测污染物或产品表面特定化合物的分布。本章总结了这些技术的当前发展状况,首先介绍基于彩色图像的系统用于检测传统颜色、形状或外部缺陷,然后接着考虑光谱图像分析在内部质量评估或污染物检测方面的最新进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验