Suppr超能文献

解锁由分层微球堆叠聚合物电解质增强的固态转换电池。

Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte.

作者信息

Hu Jiulin, Chen Keyi, Yao Zhenguo, Li Chilin

机构信息

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China.

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sci Bull (Beijing). 2021 Apr 15;66(7):694-707. doi: 10.1016/j.scib.2020.11.017. Epub 2020 Dec 1.

Abstract

Pursuing all-solid-state lithium metal batteries with dual upgrading of safety and energy density is of great significance. However, searching compatible solid electrolyte and reversible conversion cathode is still a big challenge. The phase transformation at cathode and Li deformation at anode would usually deactivate the electrode-electrolyte interfaces. Herein, we propose an all-solid-state Li-FeF conversion battery reinforced by hierarchical microsphere stacked polymer electrolyte for the first time. This g-CN stuffed polyethylene oxide (PEO)-based electrolyte is lightweight due to the absence of metal element doping, and it enables the spatial confinement and dissolution suppression of conversion products at soft cathode-polymer interface, as well as Li dendrite inhibition at filler-reinforced anode-polymer interface. Two-dimensional (2D)-nanosheet-built porous g-CN as three-dimensional (3D) textured filler can strongly cross-link with PEO matrix and LiTFSI (TFSI: bistrifluoromethanesulfonimide) anion, leading to a more conductive and salt-dissociated interface and therefore improved conductivity (2.5 × 10 S/cm at 60 °C) and Li transference number (0.69). The compact stacking of highly regular robust microspheres in polymer electrolyte enables a successful stabilization and smoothening of Li metal with ultra-long plating/striping cycling for at least 10,000 h. The corresponding Li/LiFePO solid cells can endure an extremely high rate of 12 C. All-solid-state Li/FeF cells show highly stabilized capacity as high as 300 mAh/g even after 200 cycles and of ~200 mAh/g at extremely high rate of 5 C, as well as ultra-long cycling for at least 1200 cycles at 1 C. High pseudocapacitance contribution (>55%) and diffusion coefficient (as high as 10 cm/s) are responsible for this high-rate fluoride conversion. This result provides a promising solution to conversion-type Li metal batteries of high energy and safety beyond Li-S batteries, which are difficult to realize true "all-solid-state" due to the indispensable step of polysulfide solid-liquid conversion.

摘要

追求同时提升安全性和能量密度的全固态锂金属电池具有重大意义。然而,寻找兼容的固体电解质和可逆转换阴极仍然是一个巨大的挑战。阴极处的相变和阳极处的锂变形通常会使电极 - 电解质界面失活。在此,我们首次提出一种由分层微球堆叠聚合物电解质增强的全固态锂 - 氟化铁转换电池。这种基于g - CN填充聚环氧乙烷(PEO)的电解质由于没有金属元素掺杂而重量轻,并且它能够在软阴极 - 聚合物界面实现转换产物的空间限制和溶解抑制,以及在填料增强的阳极 - 聚合物界面抑制锂枝晶。二维(2D)纳米片构建的多孔g - CN作为三维(3D)纹理填料可以与PEO基质和双(三氟甲烷磺酰)亚胺锂(LiTFSI,TFSI:双三氟甲烷磺酰亚胺)阴离子强烈交联,导致形成导电性更高且盐解离的界面,从而提高电导率(60°C时为2.5×10 S/cm)和锂迁移数(0.69)。聚合物电解质中高度规则的坚固微球的紧密堆叠能够成功地稳定和使锂金属平滑,实现至少10000小时的超长电镀/脱镀循环。相应的锂/磷酸铁锂固态电池能够承受高达12 C的极高倍率。全固态锂/氟化铁电池即使在200次循环后仍显示出高达300 mAh/g的高度稳定容量,在5 C的极高倍率下容量约为200 mAh/g,并且在1 C下能够进行至少1200次的超长循环。高赝电容贡献(大于55%)和扩散系数(高达10 cm/s)是这种高倍率氟化物转换的原因。这一结果为超越锂硫电池的高能量和安全的转换型锂金属电池提供了一个有前景的解决方案,锂硫电池由于多硫化物固液转换这一不可或缺的步骤而难以实现真正的“全固态”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验