Wilson Katie A, Wetmore Stacey D
Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
Biochemistry. 2017 Apr 4;56(13):1841-1853. doi: 10.1021/acs.biochem.6b01247. Epub 2017 Mar 24.
DNA can be damaged by many compounds in our environment, and the resulting damaged DNA is commonly replicated by translesion synthesis (TLS) polymerases. Because the mechanism and efficiency of TLS are affected by the type of DNA damage, obtaining information for a variety of DNA adducts is critical. However, there is no structural information for the insertion of a dNTP opposite an O6-dG adduct, which is a particularly harmful class of DNA lesions. We used molecular dynamics (MD) simulations to investigate structural and energetic parameters that dictate preferred dNTP insertion opposite O6-benzyl-guanine (Bz-dG) by DNA polymerase IV, a prototypical TLS polymerase. Specifically, MD simulations were completed on all possible ternary insertion complexes and ternary -1 base deletion complexes with different Bz-dG conformations. Our data suggests that the purines are unlikely to be inserted opposite anti- or syn-Bz-dG, and dTTP is unlikely to be inserted opposite syn-Bz-dG, because of changes in the active site conformation, including critical hydrogen-bonding interactions and/or reaction-ready parameters compared to natural dG replication. In contrast, a preserved active site conformation suggests that dCTP can be inserted opposite either anti- or syn-Bz-dG and dTTP can be inserted opposite anti-Bz-dG. This is the first structural explanation for the experimentally observed preferential insertion of dCTP and misincorporation of dTTP opposite Bz-dG. Furthermore, we provide atomic level insight into why Bz-dG replication does not lead to deletion mutations, which is in contrast with the replication outcomes of other adducts. These findings provide a basis for understanding the replication of related O6-dG adducts.
我们环境中的许多化合物都可能损伤DNA,而由此产生的受损DNA通常由跨损伤合成(TLS)聚合酶进行复制。由于TLS的机制和效率受DNA损伤类型的影响,获取各种DNA加合物的信息至关重要。然而,目前尚无关于与O6-dG加合物相对的dNTP插入的结构信息,O6-dG加合物是一类特别有害的DNA损伤。我们使用分子动力学(MD)模拟来研究决定DNA聚合酶IV(一种典型的TLS聚合酶)在与O6-苄基鸟嘌呤(Bz-dG)相对位置优先插入dNTP的结构和能量参数。具体而言,对具有不同Bz-dG构象的所有可能的三元插入复合物和三元-1碱基缺失复合物进行了MD模拟。我们的数据表明,由于活性位点构象的变化,包括与天然dG复制相比关键的氢键相互作用和/或反应就绪参数,嘌呤不太可能插入到反式或顺式Bz-dG相对的位置,dTTP也不太可能插入到顺式Bz-dG相对的位置。相比之下,保留的活性位点构象表明dCTP可以插入到反式或顺式Bz-dG相对的位置,dTTP可以插入到反式Bz-dG相对的位置。这是对实验观察到的dCTP优先插入以及dTTP在Bz-dG相对位置错掺入的首次结构解释。此外,我们从原子水平深入了解了为什么Bz-dG复制不会导致缺失突变,这与其他加合物的复制结果形成对比。这些发现为理解相关O6-dG加合物的复制提供了基础。