Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States.
J Am Chem Soc. 2017 Apr 5;139(13):4866-4878. doi: 10.1021/jacs.7b00516. Epub 2017 Mar 24.
We show for the first time that the frontier orbital energetics (conduction band minimum (CBM) and valence band maximum (VBM)) of device-relevant, methylammonium bromide (MABr)-doped, formamidinium lead trihalide perovskite (FA-PVSK) thin films can be characterized using UV-vis spectroelectrochemistry, which provides an additional and straightforward experimental technique for determining energy band values relative to more traditional methods based on photoelectron spectroscopy. FA-PVSK films are processed via a two-step deposition process, known to provide high efficiency solar cells, on semitransparent indium tin oxide (ITO) and titanium dioxide (TiO) electrodes. Spectroelectrochemical characterization is carried out in a nonsolvent electrolyte, and the onset potential for bleaching of the FA-PVSK absorbance is used to estimate the CBM, which provides values of ca. -4.0 eV versus vacuum on both ITO and TiO electrodes. Since electron injection occurs from the electrode to the perovskite, the CBM is uniquely probed at the buried metal oxide/FA-PVSK interface, which is otherwise difficult to characterize for thick films. UPS characterization of the same FA-PVSK thin films provide complementary near-surface measurements of the VBM and electrode-dependent energetics. In addition to energetics, controlled electrochemical charge injection experiments in the nonsolvent electrolyte reveal decomposition pathways that are related to morphology-dependent heterogeneity in the electrochemical and chemical stability of these films. X-ray photoelectron spectroscopy of these electrochemically treated FA-PVSK films shows changes in the average near-surface stoichiometry, which suggests that lead-rich crystal termination planes are the most likely sites for electron trapping and thus nanometer-scale perovskite decomposition.
我们首次表明,使用紫外可见光谱电化学可以对与器件相关的、甲脒溴化(MABr)掺杂的甲脒碘化铅三卤化物钙钛矿(FA-PVSK)薄膜的前沿轨道能(导带最小值(CBM)和价带最大值(VBM))进行表征,这为确定能带值提供了一种额外的、更直接的实验技术,与基于光电子能谱的更传统方法相比。FA-PVSK 薄膜通过两步沉积工艺处理,该工艺已知可在半透明铟锡氧化物(ITO)和二氧化钛(TiO)电极上提供高效太阳能电池。在非溶剂电解质中进行光谱电化学表征,并使用 FA-PVSK 吸收的漂白起始电位来估计 CBM,在 ITO 和 TiO 电极上,CBM 的值约为-4.0 eV 相对于真空。由于电子从电极注入到钙钛矿中,因此 CBM 独特地探测到埋入的金属氧化物/FA-PVSK 界面,否则对于厚膜很难进行表征。相同的 FA-PVSK 薄膜的 UPS 表征提供了 VBM 和电极依赖性能态的近表面互补测量。除了能态之外,在非溶剂电解质中的受控电化学电荷注入实验揭示了与这些薄膜的电化学和化学稳定性的形态依赖性异质性相关的分解途径。这些电化学处理的 FA-PVSK 薄膜的 X 射线光电子能谱显示出平均近表面化学计量的变化,这表明富含铅的晶体终止面是电子捕获的最可能位置,从而导致纳米级钙钛矿分解。