Suppr超能文献

[化学式:见原文] 的厚度和缺陷相关的电子、光学及热电特性。

Thickness and defect dependent electronic, optical and thermoelectric features of [Formula: see text].

作者信息

Ozdemir Ilkay, Holleitner Alexander W, Kastl Christoph, Aktürk Olcay Üzengi

机构信息

Physics Department, Adnan Menderes University, 09100 Aydin, Turkey.

Walter Schottky Institut and Physics Department, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany.

出版信息

Sci Rep. 2022 Jul 26;12(1):12756. doi: 10.1038/s41598-022-16899-5.

Abstract

Transition metal dichalcogenides (TMDs) receive significant attention due to their outstanding electronic and optical properties. In this study, we investigate the electronic, optical, and thermoelectric properties of single and few layer [Formula: see text] in detail utilizing first-principles methods based on the density functional theory (DFT). Within the scope of both PBE and HSE06 including spin orbit coupling (SOC), the simulations predict the electronic band gap values to decrease as the number of layers increases. Moreover, spin-polarized DFT calculations combined with the semi-classical Boltzmann transport theory are applied to estimate the anisotropic thermoelectric power factor (Seebeck coefficient, S) for [Formula: see text] in both the monolayer and multilayer limit, and S is obtained below the optimal value for practical applications. The optical absorbance of [Formula: see text] monolayer is obtained to be slightly less than the values reported in literature for 2H TMD monolayers of [Formula: see text], [Formula: see text], and [Formula: see text]. Furthermore, we simulate the impact of defects, such as vacancy, antisite and substitution defects, on the electronic, optical and thermoelectric properties of monolayer [Formula: see text]. Particularly, the Te-[Formula: see text] substitution defect in parallel orientation yields negative formation energy, indicating that the relevant defect may form spontaneously under relevant experimental conditions. We reveal that the electronic band structure of [Formula: see text] monolayer is significantly influenced by the presence of the considered defects. According to the calculated band gap values, a lowering of the conduction band minimum gives rise to metallic characteristics to the structure for the single Te(1) vacancy, a diagonal Te line defect, and the Te(1)-[Formula: see text] substitution, while the other investigated defects cause an opening of a small positive band gap at the Fermi level. Consequently, the real ([Formula: see text]) and imaginary ([Formula: see text]) parts of the dielectric constant at low frequencies are very sensitive to the applied defects, whereas we find that the absorbance (A) at optical frequencies is less significantly affected. We also predict that certain point defects can enhance the otherwise moderate value of S in pristine [Formula: see text] to values relevant for thermoelectric applications. The described [Formula: see text] monolayers, as functionalized with the considered defects, offer the possibility to be applied in optical, electronic, and thermoelectric devices.

摘要

过渡金属二硫属化物(TMDs)因其出色的电子和光学性质而备受关注。在本研究中,我们基于密度泛函理论(DFT),利用第一性原理方法详细研究了单层和少数层[化学式:见原文]的电子、光学和热电性质。在包含自旋轨道耦合(SOC)的PBE和HSE06范围内,模拟预测电子带隙值会随着层数的增加而减小。此外,将自旋极化的DFT计算与半经典玻尔兹曼输运理论相结合,用于估计单层和多层极限下[化学式:见原文]的各向异性热电功率因子(塞贝克系数,S),且得到的S低于实际应用的最优值。[化学式:见原文]单层的光吸收率略低于文献报道的[化学式:见原文]、[化学式:见原文]和[化学式:见原文]的2H TMD单层的值。此外,我们模拟了空位、反位和替代缺陷等缺陷对单层[化学式:见原文]的电子、光学和热电性质的影响。特别是,平行取向的Te-[化学式:见原文]替代缺陷产生负的形成能,表明相关缺陷在相关实验条件下可能自发形成。我们发现所考虑缺陷的存在对[化学式:见原文]单层的电子能带结构有显著影响。根据计算出的带隙值,对于单个Te(1)空位、对角线Te线缺陷和Te(1)-[化学式:见原文]替代,导带最小值的降低使结构具有金属特性,而其他研究的缺陷在费米能级处导致一个小的正带隙打开。因此,低频下介电常数的实部([化学式:见原文])和虚部([化学式:见原文])对所施加的缺陷非常敏感,而我们发现光频下的吸收率(A)受影响较小。我们还预测某些点缺陷可以将原始[化学式:见原文]中原本适中的S值提高到与热电应用相关的值。所描述的经所考虑缺陷功能化的[化学式:见原文]单层,为应用于光学、电子和热电器件提供了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a06/9325696/a2ad5feb161c/41598_2022_16899_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验