Miyazaki Kentaro, Sato Mitsuharu, Tsukuda Miyuki
Department of Life Science and Biotechnology, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
Front Bioeng Biotechnol. 2017 Feb 28;5:14. doi: 10.3389/fbioe.2017.00014. eCollection 2017.
We recently demonstrated that the ribosome is robust enough to accommodate foreign 16S rRNAs from diverse gamma- and betaproteobacteria bacteria (Kitahara et al., 2012). Therein, we used the common universal primers Bac8f and UN1541r to obtain a nearly full-length gene. However, we noticed that these primers overlap variable sites at 19[A/C] and 1527[U/C] in Bac8f and UN1541r, respectively, and thus, the amplicon could contain mutations. This is problematic, particularly for the former site, because the 19th nucleotide pairs with the 916th nucleotide, which is a part of the "central pseudoknot" and is critical for function. Therefore, we mutationally investigated the role of the base pair using several 16S rRNAs from gamma- and betaproteobacteria. We found that both the native base pairs (gammaproteobacterial 19A-916U and betaproteobacterial 19C-916G) and the non-native 19A-916G pair retained function, whereas the non-native 19C-916U was defective 16S rRNAs. We next designed a new primer set, Bac1f and UN1542r, so that they do not overlap the potential mismatch sites. 16S rRNA amplicons obtained from the environmental metagenome using the new primer set were dominated by proteobacterial species (~85%). Subsequent functional screening identified various 16S rRNAs from proteobacteria, all of which contained native 19A-916U or 19C-916G base pairs. The primers developed in this study are thus advantageous for functional characterization of foreign 16S rRNA in with no artifacts.
我们最近证明核糖体足够稳健,能够容纳来自不同γ-和β-变形菌的外源16S rRNA(北原等人,2012年)。在该研究中,我们使用通用引物Bac8f和UN1541r获得了一个几乎全长的基因。然而,我们注意到这些引物分别与Bac8f和UN1541r中19[A/C]和1527[U/C]处的可变位点重叠,因此扩增子可能包含突变。这是个问题,特别是对于前一个位点,因为第19个核苷酸与第916个核苷酸配对,后者是“中央假结”的一部分,对功能至关重要。因此,我们使用来自γ-和β-变形菌的几种16S rRNA对碱基对的作用进行了突变研究。我们发现天然碱基对(γ-变形菌的19A - 916U和β-变形菌的19C - 916G)和非天然的19A - 916G对都保留了功能,而非天然的19C - 916U对16S rRNA有缺陷。接下来,我们设计了一组新的引物Bac1f和UN1542r,使其不与潜在的错配位点重叠。使用新引物组从环境宏基因组中获得的16S rRNA扩增子主要由变形菌属物种组成(约85%)。随后的功能筛选鉴定出了来自变形菌的各种16S rRNA,它们都包含天然的19A - 916U或19C - 916G碱基对。因此,本研究中开发的引物有利于在无假象的情况下对外源16S rRNA进行功能表征。