Suppr超能文献

对高效人工光合作用系统的碳固定途径进行 C 标记。

C-Labeling the carbon-fixation pathway of a highly efficient artificial photosynthetic system.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.

出版信息

Faraday Discuss. 2017 Jun 2;198:529-537. doi: 10.1039/c6fd00231e.

Abstract

Interfacing the CO-fixing microorganism, Ralstonia eutropha, to the energy derived from hydrogen produced by water splitting is a viable approach to achieving renewable CO reduction at high efficiencies. We employ C-labeling to report on the nature of CO reduction in the inorganic water splitting|R. eutropha hybrid system. Accumulated biomass in a reactor under a C-enriched CO atmosphere may be sampled at different time points during CO reduction. Converting the sampled biomass into gaseous CO allows the C/C ratio to be determined by gas chromatography-mass spectrometry. After 2 hours of inoculation and the initiation of water splitting, the microbes adapted and began to convert CO into biomass. The observed time evolution of the C/C ratio in accumulated biomass is consistent with a Monod model for carbon fixation. Carbon dioxide produced by catabolism was found to be minimal. This rapid response of the bacteria to a hydrogen input and to subsequent CO reduction at high efficiency are beneficial to achieving artificial photosynthesis for the storage of renewable energy.

摘要

将固碳微生物、氧化亚铁硫杆菌与水分解产生的氢气所提供的能量相连接,是实现高效可再生 CO 减排的一种可行方法。我们采用 C 标记来报告无机水分解|氧化亚铁硫杆菌杂交系统中 CO 还原的性质。在富含 CO 的 C 气氛下,在反应器中积累的生物量可以在 CO 还原的不同时间点进行采样。将采样的生物量转化为气态 CO,允许通过气相色谱-质谱法确定 C/C 比。接种 2 小时后,水分解开始,微生物适应并开始将 CO 转化为生物量。在积累的生物量中观察到的 C/C 比的时间演化与碳固定的 Monod 模型一致。发现由分解代谢产生的二氧化碳很少。细菌对氢气输入的快速响应以及随后的高效 CO 还原,有利于实现人工光合作用以储存可再生能源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验