Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
Department of Systems Biology, Harvard Medical School, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2210538119. doi: 10.1073/pnas.2210538119. Epub 2022 Sep 6.
Microbes can provide a more sustainable and energy-efficient method of food and nutrient production compared to plant and animal sources, but energy-intensive carbon (e.g., sugars) and nitrogen (e.g., ammonia) inputs are required. Gas-fixing microorganisms that can grow on H from renewable water splitting and gaseous CO and N offer a renewable path to overcoming these limitations but confront challenges owing to the scarcity of genetic engineering in such organisms. Here, we demonstrate that the hydrogen-oxidizing carbon- and nitrogen-fixing microorganism grown on a CO/N/H gas mixture can overproduce the vitamin riboflavin (vitamin B). We identify plasmids and promoters for use in this bacterium and employ a constitutive promoter to overexpress riboflavin pathway enzymes. Riboflavin production is quantified at 15 times that of the wild-type organism. We demonstrate that riboflavin overproduction is maintained when the bacterium is grown under hybrid inorganic-biological conditions, in which H from water splitting, along with CO and N, is fed to the bacterium, establishing the viability of the approach to sustainably produce food and nutrients.
与植物和动物来源相比,微生物可以提供一种更可持续和节能的食物和营养生产方法,但需要能源密集型的碳(例如糖)和氮(例如氨)投入。能够利用可再生水分解产生的 H 和气态 CO 和 N 生长的固氮微生物为克服这些限制提供了一种可再生途径,但由于这些生物体中遗传工程的稀缺性,它们面临挑战。在这里,我们证明了在 CO/N/H 气体混合物上生长的氢氧化碳和固氮微生物可以过量生产维生素核黄素(维生素 B)。我们确定了可用于该细菌的质粒和启动子,并使用组成型启动子过表达核黄素途径酶。核黄素的产量比野生型增加了 15 倍。我们证明,当细菌在混合无机-生物条件下生长时,即从水分解中产生的 H 与 CO 和 N 一起供给细菌时,核黄素的过量生产得以维持,从而确立了可持续生产食物和营养物质的方法的可行性。