Tremblay Pier-Luc, Xu Mengying, Chen Yiming, Zhang Tian
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
iScience. 2020 Jan 24;23(1):100784. doi: 10.1016/j.isci.2019.100784. Epub 2019 Dec 19.
Both artificial photosystems and natural photosynthesis have not reached their full potential for the sustainable conversion of solar energy into specific chemicals. A promising approach is hybrid photosynthesis combining efficient, non-toxic, and low-cost abiotic photocatalysts capable of water splitting with metabolically versatile non-photosynthetic microbes. Here, we report the development of a water-splitting enzymatic photocatalyst made of graphitic carbon nitride (g-CN) coupled with HO-degrading catalase and its utilization for hybrid photosynthesis with the non-photosynthetic bacterium Ralstonia eutropha for bioplastic production. The g-CN-catalase system has an excellent solar-to-hydrogen efficiency of 3.4% with a H evolution rate up to 55.72 μmol h while evolving O stoichiometrically. The hybrid photosynthesis system built with the water-spitting g-CN-catalase photocatalyst doubles the production of the bioplastic polyhydroxybutyrate by R. eutropha from CO and increases it by 1.84-fold from fructose. These results illustrate how synergy between abiotic non-metallic photocatalyst, enzyme, and bacteria can augment solar-to-multicarbon chemical conversion.
人工光合系统和自然光合作用都尚未充分发挥将太阳能可持续转化为特定化学物质的潜力。一种很有前景的方法是混合光合作用,即将能够进行水分解的高效、无毒且低成本的非生物光催化剂与代谢功能多样的非光合微生物相结合。在此,我们报告了一种由石墨相氮化碳(g-CN)与降解H₂O₂的过氧化氢酶组成的水分解酶光催化剂的开发,以及它在与非光合细菌嗜麦芽窄食单胞菌进行混合光合作用以生产生物塑料中的应用。g-CN-过氧化氢酶系统具有3.4%的优异太阳能到氢能效率,析氢速率高达55.72 μmol h⁻¹,同时按化学计量比析氧。用这种水分解g-CN-过氧化氢酶光催化剂构建的混合光合系统使嗜麦芽窄食单胞菌从CO₂生产生物塑料聚羟基丁酸酯的产量翻倍,并使其从果糖生产的产量提高了1.84倍。这些结果说明了非生物非金属光催化剂、酶和细菌之间的协同作用如何增强太阳能到多碳化学物质的转化。