National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, P. R. China.
College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China.
Adv Mater. 2017 May;29(19). doi: 10.1002/adma.201606482. Epub 2017 Mar 10.
3D structures with characteristic lengths ranging from nanometer to micrometer scale often exhibit extraordinary optical properties, and have been becoming an extensively explored field for building new generation nanophotonic devices. Albeit a few methods have been developed for fabricating 3D optical structures, constructing 3D structures with nanometer accuracy, diversified materials, and perfect morphology is an extremely challenging task. This study presents a general 3D nanofabrication technique, the focused ion beam stress induced deformation process, which allows a programmable and accurate bidirectional folding (-70°-+90°) of various metal and dielectric thin films. Using this method, 3D helical optical antennas with different handedness, improved surface smoothness, and tunable geometries are fabricated, and the strong optical rotation effects of single helical antennas are demonstrated.
具有从纳米到微米尺度的特征长度的 3D 结构通常表现出非凡的光学性质,并且已经成为构建新一代纳米光子器件的广泛探索领域。尽管已经开发出几种制造 3D 光学结构的方法,但构建具有纳米精度、多样化材料和完美形态的 3D 结构仍然是一项极具挑战性的任务。本研究提出了一种通用的 3D 纳米制造技术,即聚焦离子束应力诱导变形过程,该过程允许对各种金属和介电薄膜进行可编程和精确的双向折叠(-70°-+90°)。使用这种方法,制造了具有不同手性、改进的表面平整度和可调几何形状的 3D 螺旋形光学天线,并演示了单个螺旋天线的强光学旋转效应。