Suppr超能文献

剪纸/折纸:通过“折叠”开启先进3D微纳制造的新领域

Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with "folding".

作者信息

Chen Shanshan, Chen Jianfeng, Zhang Xiangdong, Li Zhi-Yuan, Li Jiafang

机构信息

1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China.

2College of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China.

出版信息

Light Sci Appl. 2020 Apr 30;9:75. doi: 10.1038/s41377-020-0309-9. eCollection 2020.

Abstract

Advanced kirigami/origami provides an automated technique for modulating the mechanical, electrical, magnetic and optical properties of existing materials, with remarkable flexibility, diversity, functionality, generality, and reconfigurability. In this paper, we review the latest progress in kirigami/origami on the microscale/nanoscale as a new platform for advanced 3D microfabrication/nanofabrication. Various stimuli of kirigami/origami, including capillary forces, residual stress, mechanical stress, responsive forces, and focussed-ion-beam irradiation-induced stress, are introduced in the microscale/nanoscale region. These stimuli enable direct 2D-to-3D transformations through folding, bending, and twisting of microstructures/nanostructures, with which the occupied spatial volume can vary by several orders of magnitude compared to the 2D precursors. As an instant and direct method, ion-beam irradiation-based tree-type and close-loop nano-kirigami is highlighted in particular. The progress in microscale/nanoscale kirigami/origami for reshaping the emerging 2D materials, as well as the potential for biological, optical and reconfigurable applications, is briefly discussed. With the unprecedented physical characteristics and applicable functionalities generated by kirigami/origami, a wide range of applications in the fields of optics, physics, biology, chemistry and engineering can be envisioned.

摘要

先进的剪纸/折纸技术提供了一种自动化方法,用于调节现有材料的机械、电学、磁学和光学特性,具有显著的灵活性、多样性、功能性、通用性和可重构性。在本文中,我们回顾了微纳尺度下剪纸/折纸技术作为先进3D微纳制造新平台的最新进展。介绍了微纳尺度区域内剪纸/折纸的各种刺激因素,包括毛细力、残余应力、机械应力、响应力以及聚焦离子束辐照诱导应力。这些刺激因素能够通过微结构/纳米结构的折叠、弯曲和扭转实现直接的二维到三维转变,与之相比,二维前驱体的占据空间体积可以变化几个数量级。作为一种即时且直接的方法,基于离子束辐照的树型和闭环纳米剪纸技术尤其受到关注。本文还简要讨论了微纳尺度剪纸/折纸技术在重塑新兴二维材料方面的进展,以及其在生物、光学和可重构应用方面的潜力。凭借剪纸/折纸技术产生的前所未有的物理特性和适用功能,可以预见其在光学、物理、生物、化学和工程等领域的广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c86d/7193558/4d95bae986e6/41377_2020_309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验