Suppr超能文献

表面电荷修饰可降低铜绿假单胞菌在体外的黏附以及在体内植入模型中的细菌持久性。

Surface charge modification decreases Pseudomonas aeruginosa adherence in vitro and bacterial persistence in an in vivo implant model.

作者信息

Kao W Katherine, Gagnon Patricia M, Vogel Joseph P, Chole Richard A

机构信息

Department of Otolaryngology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, U.S.A.

Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, U.S.A.

出版信息

Laryngoscope. 2017 Jul;127(7):1655-1661. doi: 10.1002/lary.26499. Epub 2017 Mar 14.

Abstract

OBJECTIVE

Chronic, persistent infections complicate otologic procedures utilizing implantable devices such as cochlear implants or tympanostomy tubes. These infections are thought to be due to the establishment of microbial biofilms on implant surfaces. To address this issue, we hypothesized that surface charge modification may inhibit the formation of Pseudomonas aeruginosa biofilms on implant surfaces in vitro and in vivo.

STUDY DESIGN

We evaluated the effect of surface charge modification on bacterial biofilm formation by assessing the effect of the surface charge on bacterial adhesion in vitro and bacterial persistence in vivo.

METHODS

To study the effect of surface charge in vitro, the surface wells in culture plates were modified using a layer-by-layer polyelectrolyte assembly method. Bacterial adherence was measured at 30-, 60-, and 120-minute intervals. To study the effect of surface charge modification in vivo, the surface of titanium microscrews was similarly modified and then surgically implanted into the dorsal calvaria of adult rats and inoculated with bacteria. Two weeks after implantation and inoculation, the number of bacteria remaining in vivo was evaluated.

RESULTS

Surface charge modification results in a significant decrease in adherence of bacteria in vitro. Surface charge modification of titanium microscrew implants also resulted in a significant decrease in P. aeruginosa recovered 2 weeks after surgical implantation.

CONCLUSION

Charge modification decreases the number of bacteria adherent to a surface in vitro and decreases the risk and severity of implant infection in an in vivo rat infection model. These results have promising biomedical applications.

LEVEL OF EVIDENCE

NA. Laryngoscope, 127:1655-1661, 2017.

摘要

目的

慢性持续性感染会使使用人工耳蜗或鼓膜造孔管等植入式装置的耳科手术变得复杂。这些感染被认为是由于微生物生物膜在植入物表面形成所致。为解决这一问题,我们假设表面电荷修饰可能在体外和体内抑制铜绿假单胞菌生物膜在植入物表面的形成。

研究设计

我们通过评估表面电荷对体外细菌黏附和体内细菌存活的影响,来评估表面电荷修饰对细菌生物膜形成的作用。

方法

为研究表面电荷在体外的作用,使用逐层聚电解质组装法对培养板中的表面孔进行修饰。每隔30分钟、60分钟和120分钟测量细菌黏附情况。为研究表面电荷修饰在体内的作用,对钛微螺钉表面进行类似修饰,然后通过手术植入成年大鼠的颅骨背侧并接种细菌。植入和接种两周后,评估体内残留的细菌数量。

结果

表面电荷修饰导致体外细菌黏附显著减少。钛微螺钉植入物的表面电荷修饰还导致手术植入两周后回收的铜绿假单胞菌数量显著减少。

结论

电荷修饰在体外减少了黏附在表面的细菌数量,并在体内大鼠感染模型中降低了植入物感染的风险和严重程度。这些结果具有良好的生物医学应用前景。

证据水平

无。《喉镜》,2017年,第127卷,第1655 - 1661页。

相似文献

2
Antibacterial Activity in Iodine-coated Implants Under Conditions of Iodine Loss: Study in a Rat Model Plus In Vitro Analysis.
Clin Orthop Relat Res. 2021 Jul 1;479(7):1613-1623. doi: 10.1097/CORR.0000000000001753.
4
A newly designed tympanostomy stent with TiO coating to reduce Pseudomonas aeruginosa biofilm formation.
J Biomater Appl. 2018 Oct;33(4):599-605. doi: 10.1177/0885328218802103.
5
The use of piperacillin-tazobactam coated tympanostomy tubes against ciprofloxacin-resistant Pseudomonas biofilm formation: an in vitro study.
Int J Pediatr Otorhinolaryngol. 2009 Feb;73(2):295-9. doi: 10.1016/j.ijporl.2008.10.020. Epub 2008 Dec 17.
6
Bioactive Glass Granules Inhibit Mature Bacterial Biofilms on the Surfaces of Cochlear Implants.
Otol Neurotol. 2018 Dec;39(10):e985-e991. doi: 10.1097/MAO.0000000000002021.
7
Effect of ion-bombarded silicone tympanostomy tube on ciprofloxacin-resistant Pseudomonas aeruginosa biofilm formation.
Int J Pediatr Otorhinolaryngol. 2012 Oct;76(10):1471-3. doi: 10.1016/j.ijporl.2012.06.025. Epub 2012 Jul 21.
8
Bacterial adherence to titanium surface coated with human serum albumin.
Otol Neurotol. 2005 May;26(3):380-4. doi: 10.1097/01.mao.0000169767.85549.87.
9
Bacterial biofilm formation on a human cochlear implant.
Otol Neurotol. 2005 Sep;26(5):972-5. doi: 10.1097/01.mao.0000169047.38759.8b.
10
[Alloplastic Materials and their Propensity to Bacterial Colonisation].
Acta Chir Orthop Traumatol Cech. 2016;83(3):163-8.

引用本文的文献

2
Development and Prevention of Biofilm on Cochlear Implants: A Systematic Review.
Medicina (Kaunas). 2024 Nov 28;60(12):1959. doi: 10.3390/medicina60121959.
3
Bacterial biofilm formation on headpieces of Cochlear implants.
Eur Arch Otorhinolaryngol. 2024 Dec;281(12):6261-6266. doi: 10.1007/s00405-024-08835-2. Epub 2024 Jul 23.
4
Charge Mapping of Using a Hopping Mode Scanning Ion Conductance Microscopy Technique.
Anal Chem. 2023 Mar 28;95(12):5285-5292. doi: 10.1021/acs.analchem.2c05303. Epub 2023 Mar 15.
5
Biocompatible Materials in Otorhinolaryngology and Their Antibacterial Properties.
Int J Mol Sci. 2022 Feb 25;23(5):2575. doi: 10.3390/ijms23052575.
6
Photograftable Zwitterionic Coatings Prevent and Adhesion to PDMS Surfaces.
ACS Appl Bio Mater. 2021 Feb 15;4(2):1283-1293. doi: 10.1021/acsabm.0c01147. Epub 2021 Jan 22.
7
Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion.
Front Bioeng Biotechnol. 2021 Feb 12;9:643722. doi: 10.3389/fbioe.2021.643722. eCollection 2021.
9
Inhibiting Bacterial Adhesion by Mechanically Modulated Microgel Coatings.
Biomacromolecules. 2019 Jan 14;20(1):243-253. doi: 10.1021/acs.biomac.8b01378. Epub 2018 Dec 19.

本文引用的文献

1
The surface charge of anti-bacterial coatings alters motility and biofilm architecture.
Biomater Sci. 2013 Jun 7;1(6):589-602. doi: 10.1039/c3bm00197k. Epub 2013 Mar 4.
2
Analysis of Bacterial Biofilms on a Cochlear Implant Following Methicillin-Resistant Staphylococcus Aureus Infection.
J Audiol Otol. 2015 Dec;19(3):172-7. doi: 10.7874/jao.2015.19.3.172. Epub 2015 Dec 18.
3
Polyion multilayers with precise surface charge control for antifouling.
ACS Appl Mater Interfaces. 2015 Jan 14;7(1):852-61. doi: 10.1021/am507371a. Epub 2014 Dec 19.
4
Strategies to prevent biofilm-based tympanostomy tube infections.
Int J Pediatr Otorhinolaryngol. 2014 Sep;78(9):1433-8. doi: 10.1016/j.ijporl.2014.05.025. Epub 2014 Jun 30.
5
Influence of polyelectrolyte multilayer coating on the degree and type of biofouling in freshwater environment.
J Nanosci Nanotechnol. 2014 Jun;14(6):4341-50. doi: 10.1166/jnn.2014.8226.
6
Gold nanorods as plasmonic nanotransducers: distance-dependent refractive index sensitivity.
Langmuir. 2012 Dec 18;28(50):17435-42. doi: 10.1021/la3034534. Epub 2012 Dec 4.
8
Gold nanorods as nanotransducers to monitor the growth and swelling of ultrathin polymer films.
Nanotechnology. 2012 Jun 29;23(25):255502. doi: 10.1088/0957-4484/23/25/255502. Epub 2012 May 31.
9
Case report - biofilm infection of a cochlear implant.
Cochlear Implants Int. 2013 Mar;14(2):117-20. doi: 10.1179/1754762811Y.0000000025. Epub 2012 Feb 2.
10
How do bacteria know they are on a surface and regulate their response to an adhering state?
PLoS Pathog. 2012 Jan;8(1):e1002440. doi: 10.1371/journal.ppat.1002440. Epub 2012 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验