Krzemien Katarzyna M, Beckers Maximilian, Quack Salina, Michaelis Jens
Institute of Biophysics, Ulm University, Ulm, Germany.
PLoS One. 2017 Mar 15;12(3):e0173459. doi: 10.1371/journal.pone.0173459. eCollection 2017.
Compaction of DNA in chromatin is a hallmark of the eukaryotic cell and unravelling its structure is required for an understanding of DNA involving processes. Despite strong experimental efforts, many questions concerning the DNA packing are open. In particular, it is heavily debated whether an ordered structure referred to as the "30 nm fibre" exist in vivo. Scanning probe microscopy has become a cutting edge technology for the high-resolution imaging of DNA- protein complexes. Here, we perform high-resolution atomic force microscopy of non-cross-linked chromatin arrays in liquid, under different salt conditions. A statistical analysis of the data reveals that array compaction is salt dependent in a non-monotonic fashion. A simple physical model can qualitatively explain the observed findings due to the opposing effects of salt dependent stiffening of DNA, nucleosome stability and histone-histone interactions. While for different salt concentrations different compaction states are observed, our data do not provide support for the existence of regular chromatin fibres. Our studies add new insights into chromatin structure, and with that contribute to a further understanding of the DNA condensation.
染色质中DNA的压缩是真核细胞的一个标志,要理解涉及DNA的过程,就需要解析其结构。尽管进行了大量实验,但许多关于DNA包装的问题仍未解决。特别是,被称为“30纳米纤维”的有序结构在体内是否存在,引发了激烈的争论。扫描探针显微镜已成为用于DNA-蛋白质复合物高分辨率成像的前沿技术。在此,我们在不同盐条件下对液体中的非交联染色质阵列进行了高分辨率原子力显微镜观察。对数据的统计分析表明,阵列压缩以非单调方式依赖于盐。一个简单的物理模型可以定性地解释观察结果,这是由于盐对DNA变硬、核小体稳定性和组蛋白-组蛋白相互作用的相反影响。虽然在不同盐浓度下观察到不同的压缩状态,但我们的数据并不支持规则染色质纤维的存在。我们的研究为染色质结构提供了新的见解,从而有助于进一步理解DNA凝聚。