Suppr超能文献

染色质压缩多尺度建模:理论、模拟与实验之间的复杂协同作用

Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment.

作者信息

Bendandi Artemi, Dante Silvia, Zia Syeda Rehana, Diaspro Alberto, Rocchia Walter

机构信息

Physics Department, University of Genoa, Genoa, Italy.

Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy.

出版信息

Front Mol Biosci. 2020 Feb 25;7:15. doi: 10.3389/fmolb.2020.00015. eCollection 2020.

Abstract

Understanding the mechanisms that trigger chromatin compaction, its patterns, and the factors they depend on, is a fundamental and still open question in Biology. Chromatin compacts and reinforces DNA and is a stable but dynamic structure, to make DNA accessible to proteins. In recent years, computational advances have provided larger amounts of data and have made large-scale simulations more viable. Experimental techniques for the extraction and reconstitution of chromatin fibers have improved, reinvigorating theoretical and experimental interest in the topic and stimulating debate on points previously considered as certainties regarding chromatin. A great assortment of approaches has emerged, from all-atom single-nucleosome or oligonucleosome simulations to various degrees of coarse graining, to polymer models, to fractal-like structures and purely topological models. Different fiber-start patterns have been studied in theory and experiment, as well as different linker DNA lengths. DNA is a highly charged macromolecule, making ionic and electrostatic interactions extremely important for chromatin topology and dynamics. Indeed, the repercussions of varying ionic concentration have been extensively examined at the computational level, using all-atom, coarse-grained, and continuum techniques. The presence of high-curvature AT-rich segments in DNA can cause conformational variations, attesting to the fact that the role of DNA is both structural and electrostatic. There have been some tentative attempts to describe the force fields governing chromatin conformational changes and the energy landscapes of these transitions, but the intricacy of the system has hampered reaching a consensus. The study of chromatin conformations is an intrinsically multiscale topic, influenced by a wide range of biological and physical interactions, spanning from the atomic to the chromosome level. Therefore, powerful modeling techniques and carefully planned experiments are required for an overview of the most relevant phenomena and interactions. The topic provides fertile ground for interdisciplinary studies featuring a synergy between theoretical and experimental scientists from different fields and the cross-validation of respective results, with a multi-scale perspective. Here, we summarize some of the most representative approaches, and focus on the importance of electrostatics and solvation, often overlooked aspects of chromatin modeling.

摘要

理解触发染色质压缩的机制、其模式以及它们所依赖的因素,是生物学中一个基本且仍未解决的问题。染色质压缩并加固DNA,是一种稳定但动态的结构,以使蛋白质能够接触到DNA。近年来,计算技术的进步提供了大量数据,并使大规模模拟变得更加可行。用于提取和重构染色质纤维的实验技术得到了改进,重新激发了对该主题的理论和实验兴趣,并引发了关于先前被视为染色质确定性问题的争论。出现了各种各样的方法,从全原子单核小体或寡核小体模拟到不同程度的粗粒度,再到聚合物模型、类分形结构和纯拓扑模型。理论和实验研究了不同的纤维起始模式以及不同的连接子DNA长度。DNA是一种高度带电的大分子,使得离子和静电相互作用对染色质拓扑结构和动力学极其重要。事实上,在计算层面,使用全原子、粗粒度和连续介质技术广泛研究了离子浓度变化的影响。DNA中高曲率富含AT的片段的存在会导致构象变化,证明了DNA的作用既是结构性的也是静电性的。已经有一些初步尝试来描述控制染色质构象变化的力场以及这些转变的能量景观,但系统的复杂性阻碍了达成共识。染色质构象的研究本质上是一个多尺度主题,受到从原子到染色体水平的广泛生物和物理相互作用的影响。因此,需要强大的建模技术和精心设计的实验来全面了解最相关的现象和相互作用。该主题为跨学科研究提供了肥沃的土壤,其特点是来自不同领域的理论和实验科学家之间的协同作用以及各自结果的交叉验证,并具有多尺度视角。在这里,我们总结了一些最具代表性的方法,并关注静电和溶剂化的重要性,这在染色质建模中常常被忽视。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d82/7051991/6ae556d28ea6/fmolb-07-00015-g0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验