Lázár Zsolt I, Papp István, Varga Levente, Járai-Szabó Ferenc, Deritei Dávid, Ercsey-Ravasz Mária
Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania.
Department of Network Science, Central European University, Hungary.
Phys Rev E. 2017 Feb;95(2-1):022306. doi: 10.1103/PhysRevE.95.022306. Epub 2017 Feb 14.
Given a network, the statistical ensemble of its graph-Voronoi diagrams with randomly chosen cell centers exhibits properties convertible into information on the network's large scale structures. We define a node-pair level measure called Voronoi cohesion which describes the probability for sharing the same Voronoi cell, when randomly choosing g centers in the network. This measure provides information based on the global context (the network in its entirety), a type of information that is not carried by other similarity measures. We explore the mathematical background of this phenomenon and several of its potential applications. A special focus is laid on the possibilities and limitations pertaining to the exploitation of the phenomenon for community detection purposes.
给定一个网络,其具有随机选择的细胞中心的图-沃罗诺伊图的统计系综呈现出可转换为关于网络大规模结构信息的属性。我们定义了一种称为沃罗诺伊凝聚的节点对级度量,它描述了在网络中随机选择g个中心时共享同一个沃罗诺伊细胞的概率。该度量基于全局背景(整个网络)提供信息,这是一种其他相似性度量所不具备的信息类型。我们探讨了这一现象的数学背景及其一些潜在应用。特别关注利用该现象进行社区检测的可能性和局限性。