Suppr超能文献

具有α函数脉冲耦合的相同振子网络中的簇同步

Cluster synchronization in networks of identical oscillators with α-function pulse coupling.

作者信息

Chen Bolun, Engelbrecht Jan R, Mirollo Renato

机构信息

Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA.

Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467, USA.

出版信息

Phys Rev E. 2017 Feb;95(2-1):022207. doi: 10.1103/PhysRevE.95.022207. Epub 2017 Feb 9.

Abstract

We study a network of N identical leaky integrate-and-fire model neurons coupled by α-function pulses, weighted by a coupling parameter K. Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K, i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N-1,1) states, which have synchronized clusters of sizes N-1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K=0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N=2-4. The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014)CHAOEH1054-150010.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N-1,1) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ-neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

摘要

我们研究了一个由N个相同的漏电积分发放模型神经元组成的网络,这些神经元通过α函数脉冲耦合,并由耦合参数K加权。对该系统动力学的研究主要集中在完全同步和完全异步展开状态的稳定性上,这自然取决于K的符号,即兴奋与抑制。我们发现还存在一组丰富的吸引子,它们由完全同步振荡器的簇组成,例如固定的(N - 1,1)状态,其中有大小为N - 1和1的同步簇,以及大小大于1的相等大小的簇的展开状态。此外,我们发现了极限环,它阐明了先前观察到的准周期行为的稳定性。我们的框架利用了K = 0时动力学的中性,这使我们能够实施一种降维策略,将动力学简化为在余维数为3的子空间上的连续流,其中K的符号决定流动方向。这种简化框架自然地包含了新吸引状态所在的部分同步子空间的层次结构。通过高精度数值模拟,我们完整地描述了N = 2 - 4时所有不动点和极限环的分岔序列及稳定性。可能的吸引状态集可用于区分不同类别的神经元模型。例如,从我们之前的工作[《混沌》24, 013114 (2014年)CHAOEH1054 - 150010.1063/1.4858458]中我们知道,在此讨论的部分同步状态类型中,只有(N - 1,1)状态在相同耦合的正弦(即Kuramoto型)振荡器系统中,如θ神经元模型中,可以是稳定的。在引入单个神经元参数的小变化后,我们在此讨论的吸引不动点推广到等效不动点,其中神经元无需同时放电。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验