Suppr超能文献

延迟电导对神经元同步的影响。

Influence of Delayed Conductance on Neuronal Synchronization.

作者信息

Protachevicz Paulo R, Borges Fernando S, Iarosz Kelly C, Baptista Murilo S, Lameu Ewandson L, Hansen Matheus, Caldas Iberê L, Szezech José D, Batista Antonio M, Kurths Jürgen

机构信息

Instituto de Física, Universidade de São Paulo, São Paulo, Brazil.

Graduate Program in Science-Physics, State University of Ponta Grossa, Ponta Grossa, Brazil.

出版信息

Front Physiol. 2020 Sep 3;11:1053. doi: 10.3389/fphys.2020.01053. eCollection 2020.

Abstract

In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization. In this work, we build a neuronal network composed of adaptive integrate-and-fire neurons coupled by means of delayed conductances. We observe that the time delay in the excitatory and inhibitory conductivities can alter both the state of the collective behavior (synchronous or desynchronous) and its type (spike or burst). For the weak coupling regime, we find that synchronization appears associated with neurons behaving with extremes highest and lowest mean firing frequency, in contrast to when desynchronization is present when neurons do not exhibit extreme values for the firing frequency. Synchronization can also be characterized by neurons presenting either the highest or the lowest levels in the mean synaptic current. For the strong coupling, synchronous burst activities can occur for delays in the inhibitory conductivity. For approximately equal-length delays in the excitatory and inhibitory conductances, desynchronous spikes activities are identified for both weak and strong coupling regimes. Therefore, our results show that not only the conductance intensity, but also short delays in the inhibitory conductance are relevant to avoid abnormal neuronal synchronization.

摘要

在大脑中,兴奋-抑制平衡可防止异常同步行为。然而,已知的突触电导强度可能不足以解释不期望的同步现象。基于这一事实,我们考虑兴奋性和抑制性电导中的时间延迟,并研究其对神经元同步的影响。在这项工作中,我们构建了一个由自适应积分发放神经元组成的神经网络,这些神经元通过延迟电导相互耦合。我们观察到,兴奋性和抑制性电导率中的时间延迟既可以改变集体行为的状态(同步或不同步),也可以改变其类型(尖峰或爆发)。对于弱耦合状态,我们发现同步现象似乎与具有最高和最低平均放电频率极值的神经元有关,这与不同步时神经元放电频率不呈现极值的情况形成对比。同步也可以通过平均突触电流处于最高或最低水平的神经元来表征。对于强耦合,抑制性电导率存在延迟时会出现同步爆发活动。对于兴奋性和抑制性电导中近似等长的延迟,在弱耦合和强耦合状态下均识别出不同步的尖峰活动。因此,我们的结果表明,不仅电导强度,而且抑制性电导中的短延迟对于避免异常神经元同步也很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd55/7494968/9de0faa9e52b/fphys-11-01053-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验