Smirnov Lev A, Munyayev Vyacheslav O, Bolotov Maxim I, Osipov Grigory V, Belykh Igor
Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, GA, United States.
Front Netw Physiol. 2024 Aug 9;4:1423023. doi: 10.3389/fnetp.2024.1423023. eCollection 2024.
The dynamics of synaptic interactions within spiking neuron networks play a fundamental role in shaping emergent collective behavior. This paper studies a finite-size network of quadratic integrate-and-fire neurons interconnected via a general synaptic function that accounts for synaptic dynamics and time delays. Through asymptotic analysis, we transform this integrate-and-fire network into the Kuramoto-Sakaguchi model, whose parameters are explicitly expressed via synaptic function characteristics. This reduction yields analytical conditions on synaptic activation rates and time delays determining whether the synaptic coupling is attractive or repulsive. Our analysis reveals alternating stability regions for synchronous and partially synchronous firing, dependent on slow synaptic activation and time delay. We also demonstrate that the reduced microscopic model predicts the emergence of synchronization, weakly stable cyclops states, and non-stationary regimes remarkably well in the original integrate-and-fire network and its theta neuron counterpart. Our reduction approach promises to open the door to rigorous analysis of rhythmogenesis in networks with synaptic adaptation and plasticity.
脉冲神经元网络中突触相互作用的动力学在塑造涌现的集体行为中起着基础性作用。本文研究了一个通过一般突触函数相互连接的二次积分发放神经元的有限规模网络,该突触函数考虑了突触动力学和时间延迟。通过渐近分析,我们将这个积分发放网络转化为Kuramoto-Sakaguchi模型,其参数通过突触函数特征明确表示。这种简化给出了关于突触激活率和时间延迟的解析条件,这些条件决定了突触耦合是吸引性的还是排斥性的。我们的分析揭示了同步和部分同步发放的交替稳定区域,这取决于缓慢的突触激活和时间延迟。我们还证明,简化后的微观模型在原始积分发放网络及其theta神经元对应物中,能够很好地预测同步、弱稳定的独眼巨人态和非平稳状态的出现。我们的简化方法有望为严格分析具有突触适应和可塑性的网络中的节律发生打开大门。